
Groundwater at the Crossroads: Emerging Contaminants and the Biochar Black Box

Denmark's Groundwater Challenge: A Perfect Storm Brewing

100%

GW Dependence

Denmark relies almost exclusively on groundwater for drinking water, with minimal treatment compared to other European nations

400+

Chemicals Detected

Single waterworks screening revealed over 400 different chemical compounds

5

Never Found Before

Five compounds detected in Danish groundwater have never been reported in groundwater anywhere in the world

Primarily qualitative, not quantitative
Many detected peaks cannot be identified
Detect unexpected contaminants screen for emerging pollutants understand chemical fingerprints

Key Challenge

- Current monitoring focuses mainly on known and regulated substances like nitrates and known pesticides/degradation products, while possibly hundreds of unregulated emerging contaminants which may be risky slip through undetected.
- QA/QC and Monitoring cost
- And it is not all the chemicals that are toxic/risky, so prioritization is a must

PFAS - The Forever Chemical Crisis Accelerating in Danish Aquifers

Before 1960
Unmeasurable
No detectable TFA levels in Danish groundwater

1960-1980
0.06 ppb
Average TFA concentration

1980-2000

0.24 ppb

4x increase from previous period

2000-2020s

0.6 ppb

Exceeds EU safety limit of 0.5 ppb Denmark – 0.9 ppb

Environmental Science & Technology Letters > Vol 11/Issue 10 > Article

Open Access

Cite Share Jump to Expand

OCCURRENCE, FATE, AND TRANSPORT OF AQUATIC AND TERRESTRIAL CONTAMINANTS | September 4, 2024

A 60-Year Increase in the Ultrashort-Chain PFAS Trifluoroacetate and Its Suitability as a Tracer for Groundwater Age

Christian N. Albers*, and Jürgen Sültenfuss

Diffus grundvandsforurening med trifluoreddikesyre (TFA)

Report | Danmarks og Grønlands Geologiske Undersøgelse Rapport 2024/4

Christian Nyrop Albers

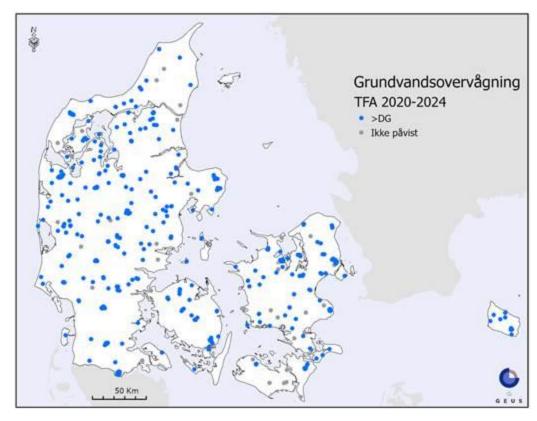
Department of Geochemistry, GEUS

A Ronneby Case Study: World's Worst PFAS Contamination

2,450×

Above Safety Threshold (highest ever in municipal drinking water)

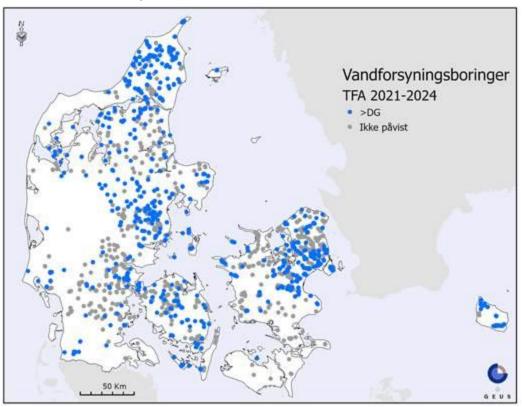
37×


Higher PFAS in children's blood vs. non-contaminated areas

31

PFAS pesticides banned in Denmark (2025)

A rare case


Groundwater monitoring wells

Blue: "TFA detected"

Grey: "TFA below detection limit"

Water supply wells

Grundvandsovervågning

Status og udvikling 1989 – 2024

GEUS 2025

www.grundvandsovervaagning.dk

| Pharmaceuticals and Personal Care Products - The Invisible Invasion

Caffeine	14,000+ ng/L
Diclofenac (painkiller)	1.4M ng/L
DEET (insect repellent)	Ubiquitous

Contamination Pathways

Wastewater treatment plant effluent (compounds not removed)
Hospital discharges and pharmaceutical factories
Landfill leachate and agricultural runoff
Veterinary antibiotics in manure from livestock

Persistent, mobile and toxic (PMT) and very persistent and very mobile (vPvM) substances pose an equivalent level of concern to persistent, bioaccumulative and toxic (PBT) and very persistent and very bioaccumulative (vPvB) substances under REACH

Sarah E. Hale ☑, Hans Peter H. Arp, Ivo Schliebner & Michael Neumann

Environmental Sciences Europe 32, Article number: 155 (2026) Cite this article

Antibiotic Resistance Genes (ARGs)

- More than 85 individual ARGs detected globally in groundwater conferring resistance to 13 antibiotic classes
- **Denmark**: ARG contamination linked to sludge spreading on agricultural fields
- **EEA Priority (2025)**: Europe-wide monitoring for antimicrobial resistance in water needed

Missing!

Industrial Chemicals to Tap Water

Benzothiazoles

Rubber & Tyre Products

Primary Sources

Car tyres, artificial turf pitches, rubber products

Pathways to Groundwater

Road runoff, leaching from sports facilities, stormwater infiltration

Toxicity Profile

High toxicity in cell tests; never found before in Danish groundwater

⚠ Unknown long-term health effects

TDCPP

Flame Retardants

Primary Sources

Furniture, building materials, electronics, textiles

Pathways to Groundwater

Leaching from landfills, building demolition, product degradation

Health Effects

Endocrine disruptor, reproductive toxin, carcinogenic potential

A Acknowledged health hazard

Melamine

Plasticizers & Detergents

Primary Sources

Hard plastics, cleaning detergents, industrial products

Pathways to Groundwater

Wastewater discharge, landfill leachate, household waste

Health Effects

Kidney and bladder damage, endocrine disruption

⚠ Organ toxin

Real-World Scenario

High-Risk Locations: Waterworks near major highways, industrial zones, or sports complexes with artificial turf should monitor for benzothiazole compounds and flame retardants. These sources create persistent contamination plumes that can reach aquifers through road runoff and stormwater infiltration.

Industrial Chemicals: The Potent Threat of Transformation Products

Bisphenol-A (BPA)

Source: Plastics (polycarbonate), epoxy resins in pipe linings,

food cans

Type: Endocrine-disrupting chemical

Health Risk: Reproductive health effects, developmental impacts

EU Status (2025): Designated as a priority hazardous substance under the revised Water Framework Directive

Implication for Engineers

BPA designation signals move towards stricter control and potential source-control measures. Review pipe materials and treatment effectiveness.

6PPD-quinone

Source: Transformation product of 6PPD antioxidant in vehicle tires

Pathway:Road runoff and stormwater infiltration

Toxicity: Highly toxic; linked to acute toxicity in aquatic organisms

EU Status (2025): Included on EU Watch List due to high toxicity

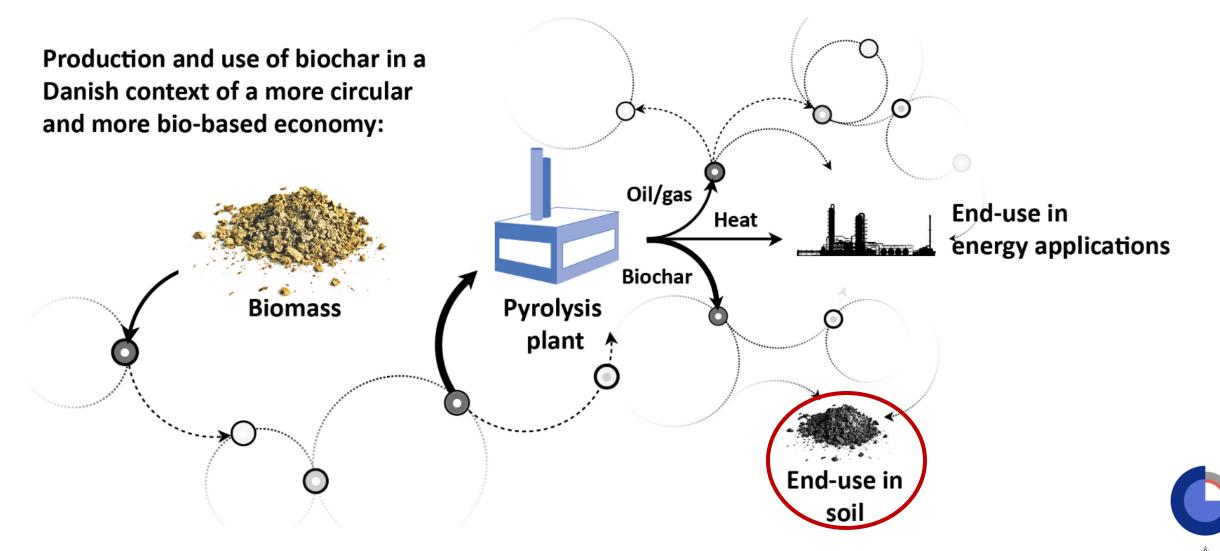
Critical Action

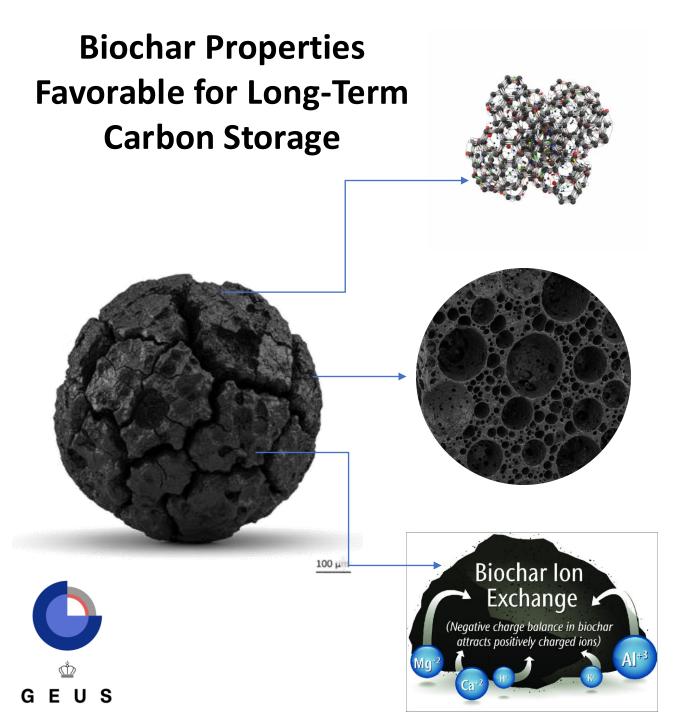
Water works near major highways and high-traffic areas must prioritize monitoring for 6PPD-quinone as a real-time, highly toxic threat from urban runoff.

ARTICLE | June 16, 2025

Occurrence and Distribution of 1,3-Diphenylguanidine, Benzotriazole, Benzothiazole, N-(1,3-Dimethylbutyl)-N-phenyl-p-phenylenediamine, and Their Derivatives in Surface Water, Drinking Water, Stormwater Runoff, and Rainwater from New York State, USA

Zhong-Min Li, HuiHo Jeong, and Kurunthachalam Kannan*


Melamine – A PMT/vPvM substance as a generic indicator for anthropogenic activity and urbanisation? An explorative study on melamine in the water cycle and soil



WHAT IS BIOCHAR?

Biochar is a stable carbonaceous material produced by heating organic waste (like crop waste, wood waste, livestock and poultry manure, etc.) in an oxygen-free environment through pyrolysis technology. Biochar looks similar to charcoal, but it has higher carbon stability.

Biochar in Denmark – Reduce C Footprint

Chemical Stability

- Highly aromatic polycyclic carbon structure
- Resists microbial decomposition (recalcitrant)
- Long half-life (100s to 1000s of years) due to fused ring systems

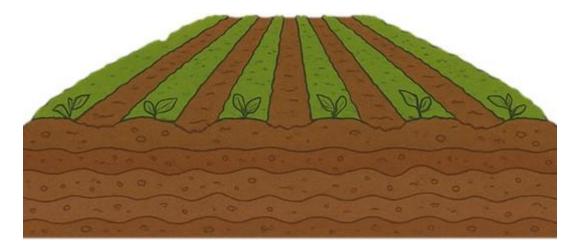
Physical Structure

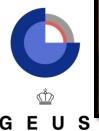
- High porosity & surface area
- Micro & macro-pores protect C from microbes
- A dense rigid structure provides durability

Surface Chemistry

- Negative surface charge
- High cation exchange capacity
- Forms stable-organic-complexes in soil

Is biochar a silver bullet?




Benefits

- Reduced carbon footprint
- Enhance soil biology & fertility
- Improved pesticide degradation

- PAHs, syngas emissions
- Changes in redox chemistry & leaching of pollutants
- Adverse effects on pesticides

Focus in Geochemistry - GEUS

Biochar for Removal of Emerging and Forever Chemicals

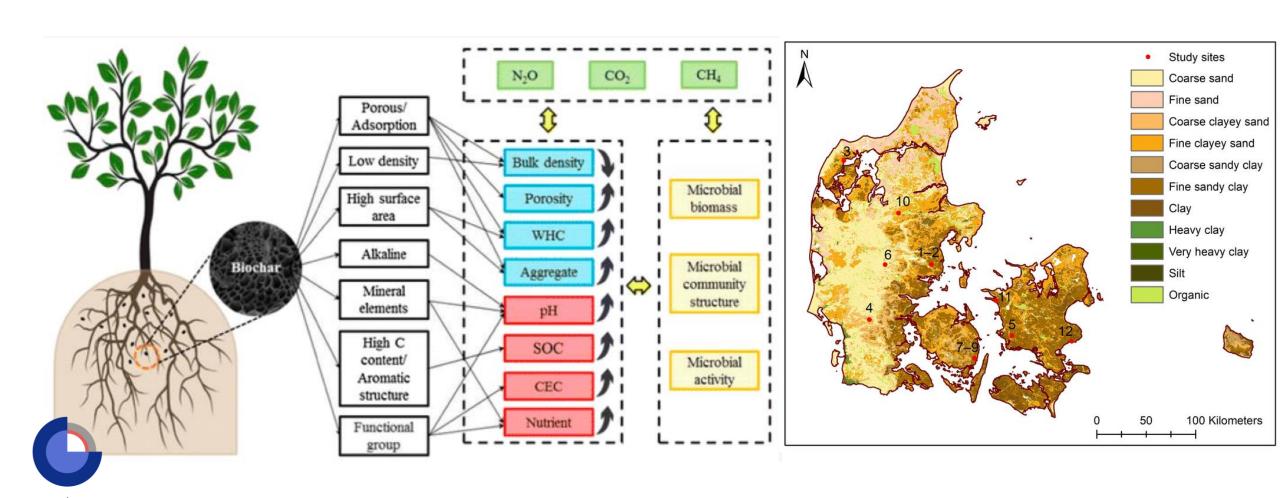
pesticide residue, antibiotics highly mobile chemicals

Composite Fertilizer from Manure and Biochar

reduce manure application and improve soil health

Engineered Sewage Sludge Biochar

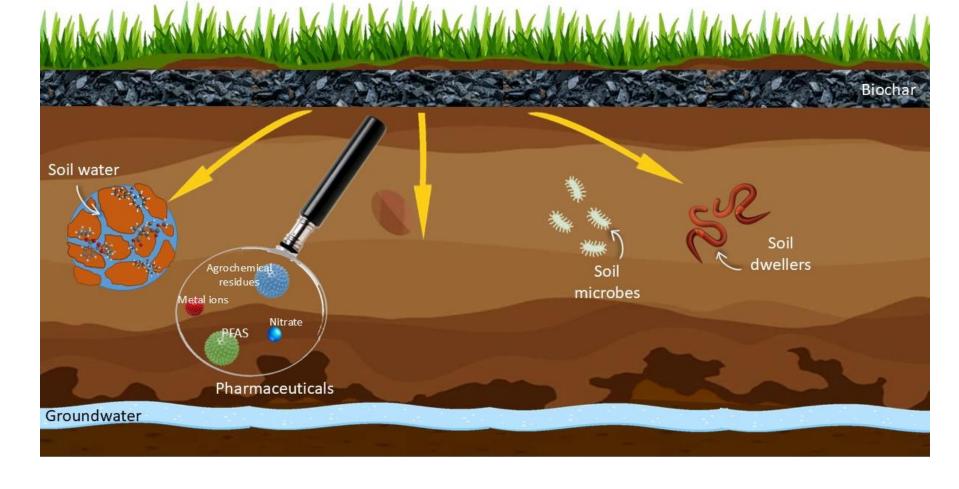
recover P



Fundamental Mechanisms of Biochar on Pesticide Residue

when applied in soil

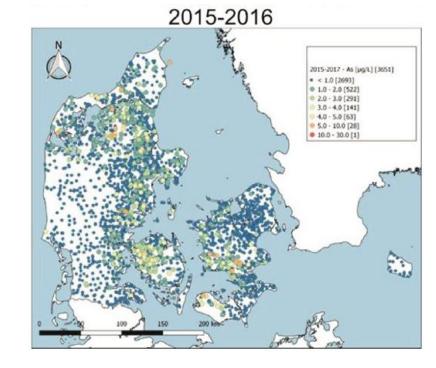
BC application changes soil conditions



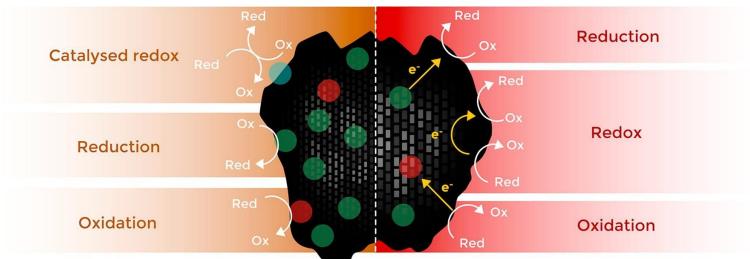
Project 1

BioReCo Biochar, Redox, and Contaminant fate in CO₂ sequestration

Will focus mainly on the retention/release mechanisms of contaminants with the application of BC into different Danish soils


Bioresource Technology

Volume 246, December 2017, Pages 271-281



Review

Applications of biochar in redox-mediated reactions

Low temperature pyrolysis "Redox pool"

High temperature pyrolysis

Oxidized redox site (e.g. quinones)

Reduced redox site (e.g. phenols)

Catalytic site (e.g. Fe, Mn)

Biological or abiotic e⁻ transfer

Electronic conduction

Remarks

- Among many contaminants urgent attention should be given to ARGs, Transformation products from
 pesticides and industrial chemicals such as 6PPDQ, PMTs such as TFA, Flame retardants and DEET,
 however prioritization is essential with toxicity/risk and frequent and careful monitoring with strong
 QA/QC.
- Recharge zones to be carefully monitored, specially if there is stormwater recharge.
- Application of biochar can provide environmental benefits, but may also introduce negative effects, such as altering soil chemistry or releasing contaminants.
- In Denmark, where groundwater is the main source of drinking water, biochar used for carbon storage must not compromise groundwater quality—pollutant release due to changes in soil redox conditions is a key concern and should be looked at based on different soil and biochar types.

