Intensified nature-based solutions for preventing groundwater pollution: Besòs case-study

21st August 2025 - 16h00 CET

Víctor Matamoros

(victor.matamoros@idaea.csic.es)

Besòs Case study: Location

Mediterranean climate with water scarcity and frequent severe droughts

Besòs Case study

The **BESÒS DELTA AQUIFER**, close to Barcelona city, is a **key element for the urban development** but currently Besòs river water is highly polluted.

GROUNDWATER (GW) USES are for industrial supply, urban supply and public parks irrigation.

The **limiting factor** for the potential use of this water as drinking water is its quality

Current situation in Besòs case study:

Recharge

... from **polluted surface waters**

... from **industrial** areas

... of **urban** waters (runoff / wastewater)

'Traditional' pollutants

- Nutrients (ammonium, nitrates...)
- Metals (iron and manganese), PAHs,
- Pesticides, pathogens, ...

Contaminants of emerging concern (CEC)

- Chemicals associated with urban activities,
- Plasticizers, halogenated compounds,
- Pharmaceuticals, personal care products, ...

Current situation in Besòs case study:

Emerging pollutants

Problem to solve

Problem

Polluted Groundwater in a Metropolitan Area (Barcelona, Spain): Unsuitable for Drinking Water Despite High Demand

Challenge

Prevent groundwater pollution from surface water infiltration impacted by WWTP effluents (nutrients and emerging pollutants).

Objective

Reduce the presence of emerging pollutants by 80-90% in infiltration water (*DIRECTIVE (UE) 2024/3019*).

Barcelona Case Site

Current solutions

IMPROVE WWTP PERFORMANCE ON THE ATTENUATION OF CEC

Intensified technologies

GAC, membranes, advanced oxidation (>90% reduction)

Nature based solutions

Integrated in the landscape Low energy costs / energy neutrality No GHG emissions Ecosystem benefits Green areas Specific designs and high surface area demand

Intensified NBS for reducing surface area demand and enhancing pollutant reduction

Root mats CWs

Bioelectrochemically-assisted CWs

February 2024

Deployment of biobased solutions

- Montcada i Reixac WWTP (400,000 PE)
- Secondary treated wastewater

May 2024

June 2024

Results

GENERAL WATER QUALITY PARAMETERS (July-October 2024)

200 mm/d= HRT of 4 days 400 mm/d= HRT of 2 days 800 mm/d= HRT of 1 day

-High reduction of nutrients (N and P) and turbidity (>80%) at HLR of 400 mm/d

Results

EMERGING POLLUTANTS (July-October 2024)

Results

Cold conditions, outdoor temperatures -4°C

(January 2025)

Water quaity parameters

EMERGING POLLUTANTS

	HLR 1	HLR 2
	200 mm/day	400 mm/day
PB	72 ± 21 %	58 ± 15 %
P1	55 ± 25%	51 ± 21 %
P2	56 ± 30 %	48 ± 23 %
Р3	51 ± 30 %	46 ± 18 %

Vision

• SPAIN: Scale-up the NBS technology as a quaternary treatment technology in existing WWTPs to prevent groundwater pollution, helping to improve groundwater quality for use as drinking water (proximity water, KM ZERO WATER).

THANK YOU FOR YOUR ATTENTION

This project has received funding from the European Union under grant agreement No 101081807 project UPWATER (Understanding groundwater Pollution to protect and enhance WATERquality)

