

Envytech Solutions AB Mölndalsvägen 22 | 412 63 Göteborg | envytech.se

Stabilization of PFAS contaminated soils

PFAS in soil

Short chain PFAS – more mobile and are prevalently found in water

Long chain PFAS – less mobile and are prevalently found in soils

PFAS in soil

- Supra molecule, sticks to surfaces (creating layers)
- Total concentration vs Leachability
- Leaches for a long time

Example PFAS contaminated soil from an airport

Description	Unit	Sample 1	Sample 2	Sample 3	Sample 4
	Crowdlagard		Gravel cand	Gravel sand,	Sand with 30%
		Gravel Saliu	Gravel Saliu	rocks	ash from burnt
Sum PFAS28 - total concentration	ug/kg	48	155	231	331
Sum PFAS28 - leachability	ng/l	11 000	18 000	68 000	9 200

PFAS in soil

>C6 PFAS are prevailantly found in soils.<C6 PFAS are prevailantly found in water</pre>

		Sample 3	Sampl 3
Compound	Unit	L/S 2	L/S 8
PFDA (Perfluordekansyra)	ng/l	120	23
PFNA (Perfluornonansyra)	ng/l	140	12
PFOA (Perfluoroktansyra)	ng/l	910	42
PFOS (Perfluoroktansulfonsyra)	ng/l	60000	11000
PFOSA (Perfluoroktansulfonamid)	ng/l	2600	720
6:2 FTS (Fluortelomer sulfonat)	ng/l	1900	97
PFHxS (Perfluorhexansulfonsyra)	ng/l	930	41
PFHpA (Perfluorheptansyra)	ng/l	140	<10
PFHxA (Perfluorhexansyra)	ng/l	240	12
PFPeA (Perfluorpentansyra)	ng/l	400	<20
PFBA (Perfluorbutansyra)	ng/l	57	<20
PFBS (Perfluorbutansulfonsyra)	ng/l	33	<10
Summa PFAS SLV 11	ng/l	65000	11000
Summa PFAS 28	ng/l	68000	12000

Stabilization of PFAS contaminated soils

Rembind[®] – Stabilization agent

Rembind Distribution Rights

What is Rembind and how does it work?

Activated carbon product for stabilization of PFAS contaminated soils

- Made in Australia
- Patented material containing activated carbon, aluminium hydroxide and other adsorbents. The product is a fine power, 200-400 µm (PAC <100 µm).
- A product specifically made for stabilization of contaminants in soil.

Rembind – Stabilization of PFAS in Soil

Hydrophobic Backbone Charged Head

Pores

Rembind – Stabilization of contaminants in Soil

Not only PFAS!

- Metalls (Cu, Zn, Pb, Ar...)
- PAH:er
- TBT, DBT, MBT
- and others...
- Report SweBoat

https://www.atgardsportalen.se/bibliotek/Sweboatatgardstest_batuppstallningsplats_v1,01ink_bilagor.pdf

Analyzing methods to verify effect and evaluate long time durability

About 5 years of verified field data, and counting... Several studies have been carried out to evaluate the long-time stabilizing effects for Rembind on PFAS.

For evaluation, these analytical methods are used

- EN12457-1 European Standard test
- LEAF method U.S. EPA Leaching Environmental Assessment Framework (USA)
- MEP-1230 the U.S. EPA Multiple Extraction Procedures (USA)
- Simulating the worst possible conditions that can occur in nature and repetitive treatment cycles of leaching to simulate decades of rainfall under different extreme conditions (extreme variations in pH, temperature, ionic strength conditions etc.)

Reduction in PFAS Leachability over 16 Months

Peer review articles

Reduction in	leachability and b	ioavailability	Long term durability and stability			Product comparisions (bio char/GAC/Rembind)	
Application of soil amendments for reducing PFAS leachability and bioavalability (2022)	Changing bioavailability of per- and polyfluoroalkyl substances (PFAS) to plant in biosolids amended soil through stabilization or mobilization (2022)	Assessing the impact of immobilisation on the bioavailability of PFAS to plants in contaminated Australian soils (2024)	Sorptive remediation of perfluorooctanoi c acid (PFOA) using mixed mineral and graphene/carbo n-based materials (2018)	Sorbent assisted immobilisation of perfluoroalkyl acids in soils – effect on leaching and bioavailability (2021)	LEAF method - Durability of sorption of per- and polyfluorinated alkyl substances in soils immobilized using common adsorbents: 2. Effects of repeated leach[] (2021)	Performance of different sorbents toward stabilizing per- and polyfluoroalkyl substances (PFAS) in soil (2022)	Durability of sorption of per- and polyfluorinated alkyl substances in soils immobilised using common adsorbents (2021)

The optimal Dosage of Rembind

Eurofins Sweden 🔅 eurofins

- 1. Representative sample of the soil
- 2. Analyzing for PFAS
- 3. Envytech will recommend about 3 different dosage rates of Rembind (experience from previous projects)
- 4. Bench-scale stabilization test, carried out at Eurofins lab

Screen soil, dose reagents (0% to 5%)

Add water and fix for 24 hours

- 5. Leachability test
- 6. Results will show the optimal dosage of Rembind (dosage curve)

NEW – Full scale pilot!

- Swedavia (Arlanda airport Stockholm)
- 2,5 years of measurments comparing four different stabilizations products
- Adding 3 % Rembind
- >99% reduction of leachability

Stabilization Lab Trial for silty sandy soil from Fire Station Area

Lab trial on silty sandy soils

Total conc PFAS11: 17 ug/kg

Stabilization using Rembind percentages of 0%, 0,5%, 1% and 2%

Analyzing of soil using the European standard method for PFAS sum 11

Result reduction of leachability >99 %

	Ämne	Enhet	Koncentration
	TOC % TS	% TS	0,91
	6:2 FTS (Fluortelomer sulfonat)	ug/kg	0,098
E ROS	PFHxS (Perfluorhexansulfonsyra)	ug/kg	0,35
C (23)	PFOA (Perfluoroktansyra)	ug/kg	0,15
PCC)	PFOS (Perfluoroktansulfonsyra)	ug/kg	16
PG8 PG10	PFPeA (Perfluorpentansyra)	ug/kg	0,26
	Summa PFAS SLV 11	ug/kg	17

	Brandstation	Brandstation	Brandstation	Brandstation
	2023-04-27	2023-04-27	2023-04-27	2023-04-27
Ämne	Rembind 0%	Rembind 0,5%	Rembind 1%	Rembind2%
	LS = 2	LS = 2	LS = 2	LS = 2
5:2 FTS (Fluortelomer sulfonat)	69	0	0	0
PFBA (Perfluorbutansyra)	33	0	0	0
PFBS (Perfluorbutansulfonsyra)	10	0	0	0
PFHpA (Perfluorheptansyra)	29	0	0	0
PFHxA (Perfluorhexansyra)	74	0	0	0
PFHxS (Perfluorhexansulfonsyra)	92	0	0	0
PFNA (Perfluornonansyra)	18	0	0	0
PFOA (Perfluoroktansyra)	53	0	0	0
PFOS (Perfluoroktansulfonsyra)	1800	2,9	0	0
PFOSA (Perfluoroktansulfonamid)	20	0	0	0
PFPeA (Perfluorpentansyra)	97	1,1	0	0
Summa PFAS SLV 11	2300	4	0	0
/S = 8	430	1,9	0	0

Stabilization Lab Trial for sandy soil from Luleå airport

Lab trial on sandy soils

Total conc PFAS11: 140 ug/kg

Stabilization using Rembind percentage of 0%, 1,5%, 2% and 2,5%

Analyzing of soil using the European standard method for PFAS sum 11

Result reduction of leachability >96 %

Dosage 1,5 % Rembind

	DÅVA Flygplats	DÅVA Flygplats	DÅVA Flygplats	DÅVA Flygplats
	2022-11-04	2022-11-04	2022-11-04	2022-11-04
Ämne	Rembind 0%	Rembind 1,5%	Rembind 2%	Rembind 2,5%
	LS = 2	LS = 2	LS = 2	LS = 2
6:2 FTS (Fluortelomer sulfonat)	910	22	37	<1,0
PFBA (Perfluorbutansyra)	35	<20	<20	<3,0
PFBS (Perfluorbutansulfonsyra)	39	<10	<10	<1,0
PFHpA (Perfluorheptansyra)	140	<10	<10	<1,0
PFHxA (Perfluorhexansyra)	380	<10	<10	<1,0
PFHxS (Perfluorhexansulfonsyra)	3600	57	81	1.0
PFNA (Perfluornonansyra)	75	<10	<10	<1,0
PFOA (Perfluoroktansyra)	1400	18	33	<1,0
PFOS (Perfluoroktansulfonsyra)	150000	4800	6400	67
PFOSA (Perfluoroktansulfonamid)	300	56	86	1.0
PFPeA (Perfluorpentansyra)	170	<20	<20	<1,0
Summa PFAS SLV 11	160000	5000	6700	69
L/S = 8	13000	38	130	87

🔅 eurofins

	DÅVA Flygplats	DÅVA Flygplats	DÅVA Flygplats	
	2022-11-04	2022-11-04	2022-11-04	
Ämne	Rembind 1,5%	Rembind 2%	Rembind 2,5%	
Summa PFAS SLV 11	50	7,4	4,9	L/S= 0,1
Summa PFAS SLV 11	250	120	180	L/S= 2
Summa PFAS SLV 11	180	110	180	L/S= 9,9

Full-Scale stabilization

Rembind[®] – Stabilization agent

Rembind Reference Projects Sweden

- Stabilization of 500 tons of soil from construction works at a fire fighting station. Treatment at landfill before soil was put in landfill cells.
- Stabilization of 4000 tons of soil from metal surface treatment industry. Treatment at landfill before soil was put in landfill cells.
- Stabilization of 1000 tons of soil from Fire Fighting Practice area. Treatment at landfill before soil was put in landfill cells.
- Stabilization of 1000 tons of soil from Fire Fighting Practice area – On site and Reused
- Stabilization of 5000 tons of soil from Umeå Airport, Treatment at landfill before soil was put in landfill cells.

Over 180 projects, World Wide Treatment of >500 000 tons of PFAS contaminated soil

21

How to carry out full scale stabilization – "Contact sport"

- Two step mixing procedure
- 1. Pre-mix (rough mixing)
- Excavator
- Loader
- Add water (dust control and activating the product).
- 2. Fine mixing
- Trommel screen
- Soil recycler
- ALU Bucket

• Mixing in Rembind as a slurry

How to carry out full scale stabilization

24

C RemBind

Results for stabilization of different type of soils with different sources of PFAS

Soil type	Pollution source	Concentration PFAS 11/PFAS 28	Concentration leachate L/S2	Mixture percentage Rembind 100	Concentration leachate L/S2, after stabilisation	Reduction of leachability
		(ug/kg TS)	(ng/l)	(%)		
Gravel sand	Surface treatment industry	1000	230 000	3	8500	96%
Gravel sand	Surface treatment industry	1000	230 000	5	4600	98%
Gravel sand	Surface treatment industry	30	4 300	3	590	86%
Gravel sand	Airport area	231	54 000	2	23	99,9%
Gravel silty sand	Airport area	155	18 000	1	43	99,9%
Gravel sand	Airport area	48	11 000	1	1,7	99,9%
Gravel sand	Airport area	410	170 000	2	680	99,9%
Sand	Fire drill site	420	138 000	2	50	99,9%
Sand	Fire drill site	420	138 000	5	<10	99,9%
Sand	Airport area	140	160 000	1,5	4900	97%
Sand	Airport area	140	160 000	2,5	68	99,9%

Stabilization of PFAS contaminated soil at an active firefighting training site

Swedish Defence Estate site (army base)

Active site in need of an installation of a new petroleum tank

Stabilization of PFAS contaminated soil at an active fire fighting training site

- Swedish Defence Estate site (army base)
- Active site in need of an installation of a new petroleum tank
- Active as in fire fighting is carried out weekly
- Area widely contaminated with PFAS
- A total of 1000 ton in need of treatment 500 ton: 140-540 ug/kg 500 ton: 500 -1100 ug/kg

Stabilization of PFAS contaminated soil at an active fire fighting training site

How construction and installation projects used to be carried out by Defence Estate:

- Area sampled and classified
- Soil being excavated to make room for new installations soil labelled as waste by law, as you are NOT allowed do re deposit contaminated soil with levels above target criterias for the site
- Soil is loaded on trucks
- Trucks drive long distanses to find a place where PFAS contaminated soil is accepted (creating a new piont source as no landfills have treatment systems for PFAS leachate)
- Clean soil has to be bought and transported to site
- Clean soil is used as fill in contaminated and active area.
- Clean soil is now PFAS contaminated.

Stabilization of PFAS contaminated soil at an active fire fighting training site

How construction and installation projects are carried out NOW by Defence Estate:

- Area sampled and classified
- Soil being excavated to make room for new installations soil labelled as waste by law, as you are NOT allowed do re deposit contaminated soil with levels above target criterias for the site
- Soil is mixed with Rembind on site minimizing the leaching ablility of the PFAS from the soil. Soil is now treated and is NOT a waste and can be re deposited
- Soil is used as fill materal (a resource!)
- → No long transports needed
- No creation of a new point source
- ➔ No need to buy new soil or to transport it

Results

Leachability in soils after stabilization

Substance	Suffix	Untreated (average concentration in leachate)	Treated soil Column test	Reduction in leaching abilities
		L/S=2.0	L/S=2.0	
6:2 FTS	ng/l	1300	<10,0	99,9%
PFBA	ng/l	220	<10,0	99,9%
PFBS	ng/l	120	<10,0	99,9%
PFDA	ng/l	<100	<10,0	99,9%
PFHpA	ng/l	270	<10,0	99,9%
PFHxA	ng/l	1200	23 ±7	91,4%
PFHxS	ng/l	500	<10,0	99,9%
PFNA	ng/l	<100	<10,0	99,9%
PFOA	ng/l	830	<10,0	99,9%
PFOS	ng/l	400 000	<10,0	99,9%
PFPeA	ng/l	480	<10,0	99,9%

Cost?

Ex. Case:

- Site conditions:
 - Sand / silty sand
 - Concentrations, Sum PFAS: 50 150 ug/kg
 - 1000 ton of contaminated soil
 - Reuse of stabilized soil, on-site
- Optimal dosage rate Rembind: **1 %**

	% Rembind	Cost / ton treated soil
Rembind + freight		50 Euro
Mixing equipment on-site	1%	Jo Luio
Total cost (treating 1000 ton)		50 000 Euro

Contact

Robin Axelson <u>Robin.axelson@envytech.se</u> +46 704 04 99 86

enytech Miljö & teknik

And for more info, see <u>www.envytech.se</u> or our LinkedIn