

Foam fractionation and electrochemical oxidation for treatment of PFAS-contaminated water

Sanne Smith

Swedish University of Agricultural Sciences

Department of Aquatic Sciences and Assessment

This project has received funding from the European Union's Horizon 2020 research and innovation programme under the Marie Skłodowska-Curie grant agreement No 860665.

About me - Present

Per- and polyfluorinated substances: towards the Future Of Research and Communication in Europe

Developing innovative treatment techniques for PFAS in contaminated water

Date of thesis defense: 25-09-2023

with leachate water

Methods

with leachate water

Removal decreased for:

- Contact time < 20 min
- % foam < 10 %
- Air flow < 7.5 L/min

Smith et al., ACS EST Water 2022, https://doi.org/10.1021/acsestwater.2c00032

Results

with industrial water

with industrial water

Removal decreased for $t_c < 20$ min

Positive effect of conductivity and total elements

PFBA	PFPeA	PFHxA	PFHpA	PFOA	PFNA	PFDA	PFBS	PFPeS
PFHxS	PFHpS 📃	PFOS	PFNS	6:2 FTSA	8:2 FTSA	FOSA	FOSAA	EtFOSAA

Air phase

PFBA	PFPeA	PFBS	PFHxA	4:2 FTSA
PFPeS	PFHpA	PFHxS	PFOA	6:2 FTSA
PFHpS	PFECHS	PFNA	FOSA	PFOS
PFDA	8:2 FTSA	PFNS	PFUnDA	Me-FOSAA
Et-FOSAA	PFDS	PFDoDA	PFTriDA	PFTeDA

Smith et al., STOTEN 2023, <u>https://doi.org/10.1016/j.scitotenv.2023.162050</u>

Methods

Electrochemical Oxidation

with leachate and groundwater and foam

Electrochemical cell

Electrochemical Oxidation

Water	ΣPFAS (µg L ⁻¹)	TOC (mg L ⁻¹)
Leachate	2.3	44
Groundwater	2.8	36
Leachate Foam	3.6	47
Groundwater Foam	19	80

Results

Results

Electrochemical Oxidation

Results

Conclusion

Is the proposed treatment scheme an efficient on-site PFAS remediation technology?

But...

Yes!

Thank you for your attention

Contact details: <u>sanne.smith@slu.se</u>

More about **PERFORCE**: https://perforce3-itn.eu/

This project has received funding from the European Union's Horizon 2020 research and innovation programme under the Marie Skłodowska-Curie grant agreement No 860665.

More about PFAS? Listen to our podcast!

