

engineers | scientists | innovators

DPT Practitioner's Guide: Best Practices for Successful DPT Injection of Solid Amendments in Sand Aquifers

Neal Durant, Ph.D. ndurant@geosyntec.com

Workshop on Injection of Remediation Agents Copenhagen, 3 November 2022 Geosyntec[▶]

consultants

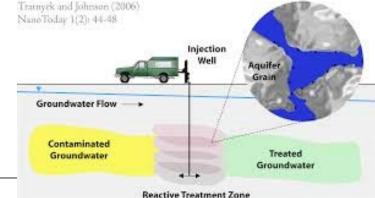
James Wang, Andrzej Przepiora, Dimin Fan, Neal Durant

engineers | scientists | innovators

Document Scope & Purpose

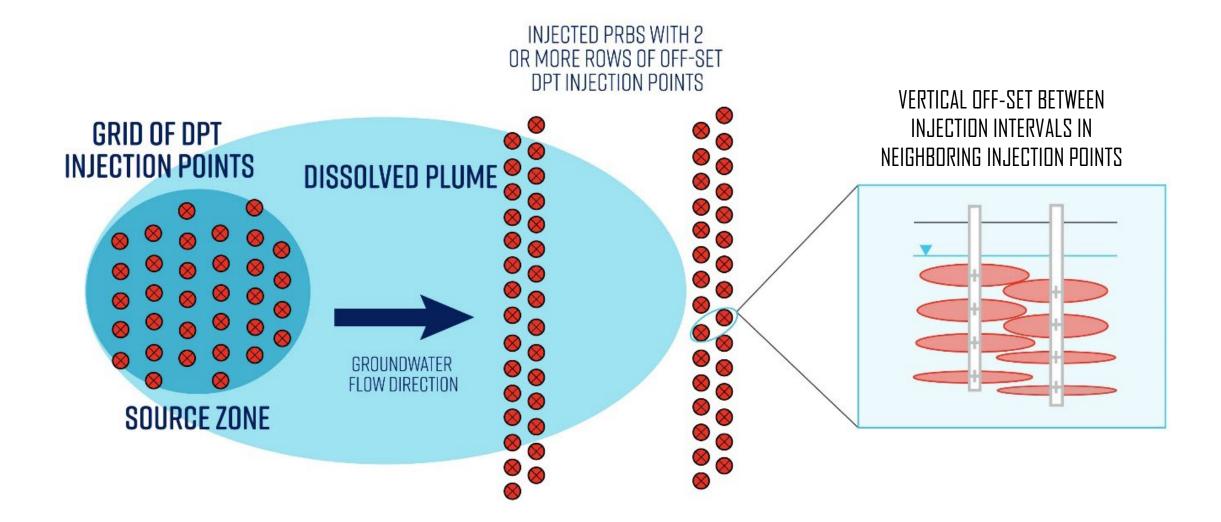
Geosyntec Consultants

- Focus Direct Push Injection (DPI) of solid amendments for in situ treatment of groundwater contaminants in sand aquifers, e.g.,
 - Microscale zero valent iron (mZVI)
 - Colloidal activated carbon (CAC)
 - ZVI-carbon composites (e.g., EHC, Provect-IR)
- Draw experience from U.S. and DK collaborators to develop a best practice-based guidance for remediation practitioners in DK
- Improve design and implementation of DPI and achieve desired project outcomes
- Best practices, and expectation management
- Review of Danish DPT case studies
- Not addressed: injection in clay till / enhanced fracturing*



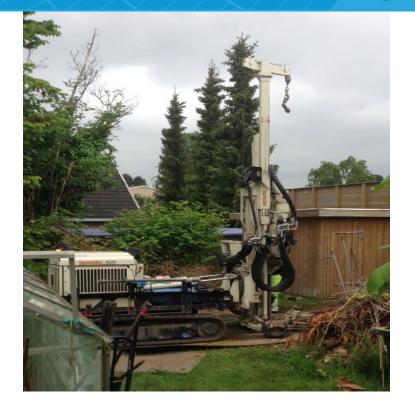
Motivation

- DPI is potentially cost-effective, common, easy-to-use
- Aim: maximize injection and treatment success
- **Expectations** for DPI can be over-rated. We must set appropriately
- DPI may fail when:
 - practitioners lack sufficient experience with DPI equipment and/or heterogeneous geology,
 - unsuitable injection tooling or injection parameters (e.g., pressures and flow rates) are applied,
 - subsurface conditions are not properly understood during design
 - and/or best practice protocols are not followed
- Success metrics: injection quantity, distribution.... vs.. Treatment. Soil and groundwater quality improvement are ultimate measure
- Effective treatment performance depends on contact how to achieve best results?


Danish & Swedish DPT Case Studies Reviewed

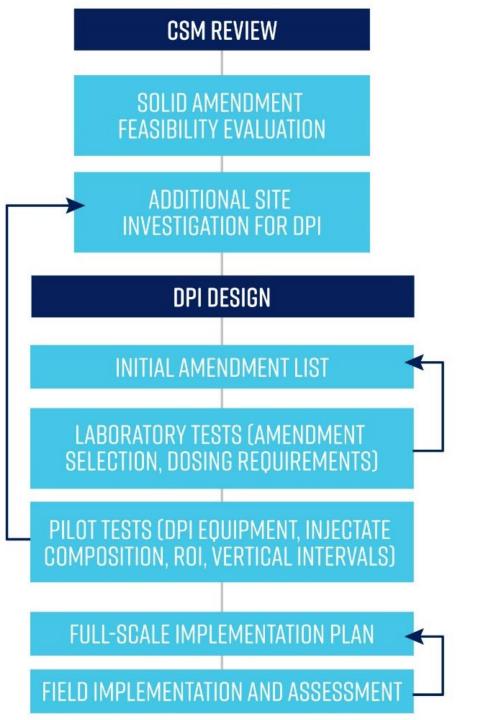
Site Address	Source	Injection Technique	Reagents
Rugmarken 42, Farum, DK	GEO	DPT and Injection wells	Molasses + nZVI + KB-1
Borupvej 35, Hillerød, DK	GEO	DPT and Injection wells	nZVI, Molasses + nZVI
Roskildevej 544, Brøndby, DK	GEO	DPT	Molasses + KB1
Zakrisdal, Karlshavn, SE	GEO	DPT	Regenesis 3DMe, HRC
Industrivej 2, 3540 Lynge, DK	Ramboll	DPT	Colloidal Act carbon + KB-1
Hagfors, SE	NIRAS	DPT	mZVI
Boden, SE	NIRAS	DPT	mZVI + Bioaug
Pennehave 13-15, Hoersholm, DK	NIRAS	DPT	EVO, KB-1
Ahornvej 3A-D, 2970 Hoersholm, DK	COWI	DPT	EVO, KB-1
Rungstedvej, 19, 2970 Hoersholm, DK	COWI	DPT	EVO, KB-1
Rugårdsvej 234, Odense, DK	COWI	DPT	mZVI (Ferox Flow)
Hvedemarken 3-5, 3520 Farum, DK	COWI	DPT	Provect-IR + KB-1
Ørnegårdsvej 2, Gentofte, DK	GEO	Injection wells	Molasses
Esrumvej 72, Helsingør, DK	GEO	Injection wells	Molasses, nZVI, EOS, KB-1

Typical DPI Treatment Zone Configurations

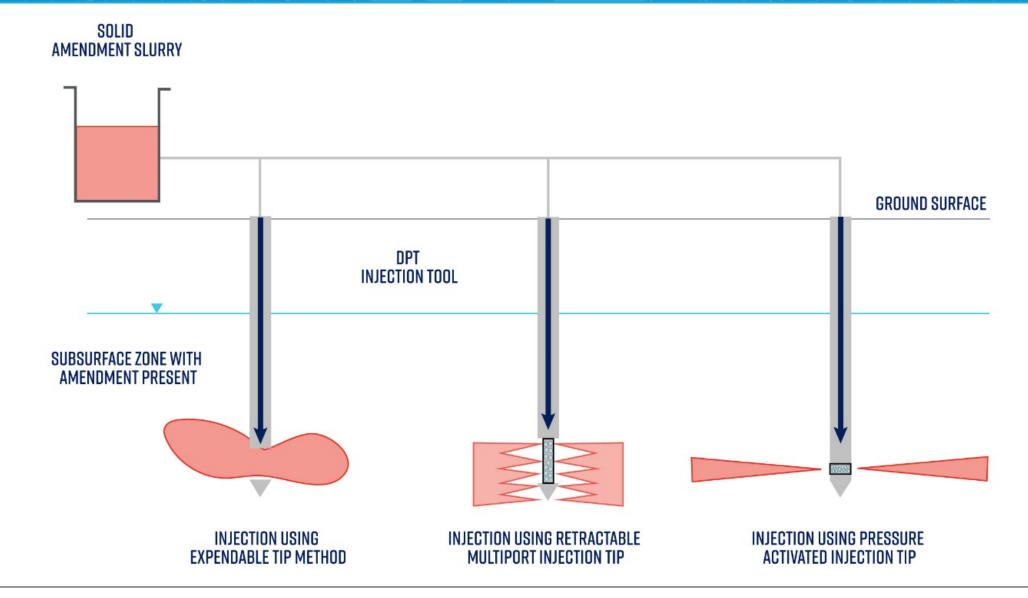


Some Best Practice Questions Answered

Geosyntec^D consultants


- Which amendments to use for which contaminants?
- Amendment dosage?
- Amendment longevity?
- Will reinjection be necessary in the future?
- Injection point spacing, ROI, laterally / vertical spacing?
- Injection mode: top-down? bottom-up? When?
- Injection pressures?
- How to avoid short-circuiting / daylighting?
- How to avoid uncontrolled, unintended delivery?
- What about clogging of injection equipment?
- What can we expect from DPI?

Flow Chart of DPI Design and Implementation Process


		Target Contaminants				
Treatment Mechanism	Commercial Injectable Solid Products	Chlorinated hydrocarbons	Petroleum Hydrocarbons	Reducible metals (e.g., Cr, As, Se)	Phenols, cresols, and PAHs	Pesticides
Abiotic reduction	nZVI, mZVI	\checkmark		\checkmark		
Microbial oxidation	BOS-200®	Р	\checkmark		Р	
Microbial reduction	mZVI-C (EHC [®] , Provect- IR [®] , EVO-ZVI mixtures)	\checkmark		\checkmark		
Sorption	CAC, PAC	\checkmark	\checkmark	Р	Р	Р
P- potentially treatable, depending on COC type, concentrations, and background geochemistry						

Common Commercial Injection Tools Used in DPI

Geosyntec[▷] consultants

DPI Particle Emplacement Methods

engineers | scientists | innovators

Typical Design Parameters and DPI Equipment Used for Common Types of Solid Amendments

Doromotor	Colloidal Amendments		Microscale Amendments		
Parameter nZ	nZVI	CAC	mZVI/C-mZVI	GAC/PAC	
Product Form	Concentrated suspension		Dry powder		
Dosing Rate	< 0.1%	0.5 – 2% soil wt	0.25 – 1.5% soil wt	0.5 – 2% soil wt	
Injectate Concentration	< 2 – 10 g/L	< 200 g/L, adjustable	100 – 300 g/L	50 – 200 g/L	
Additives	Stabilizers included in commercial nZVI suspensions	Proprietary polymer stabilizer	Guar gum (5 – 6 g/L) in C-mZVI)	None	
ROI	1 – 3 m		0.5 – 2 m		
Type of DPI Injection Tool	Retractable tool		Pressure activated		
Type of Injection Pump	Air diaphragm or progressive cavity		Progressive cavity or high-pressure piston		
Injection Volumes	Targets 25% to 50% effective pore volume		Controlled by the selected dosing rate, the ROI and injectate concentration		
Injection Pressures	< 5 bars		4 – 40 bars		
Injection Flow Rates	3 – 10 L/min		5 – 30 L/min		

Potential Problems with DPI of High Viscosity Amendments

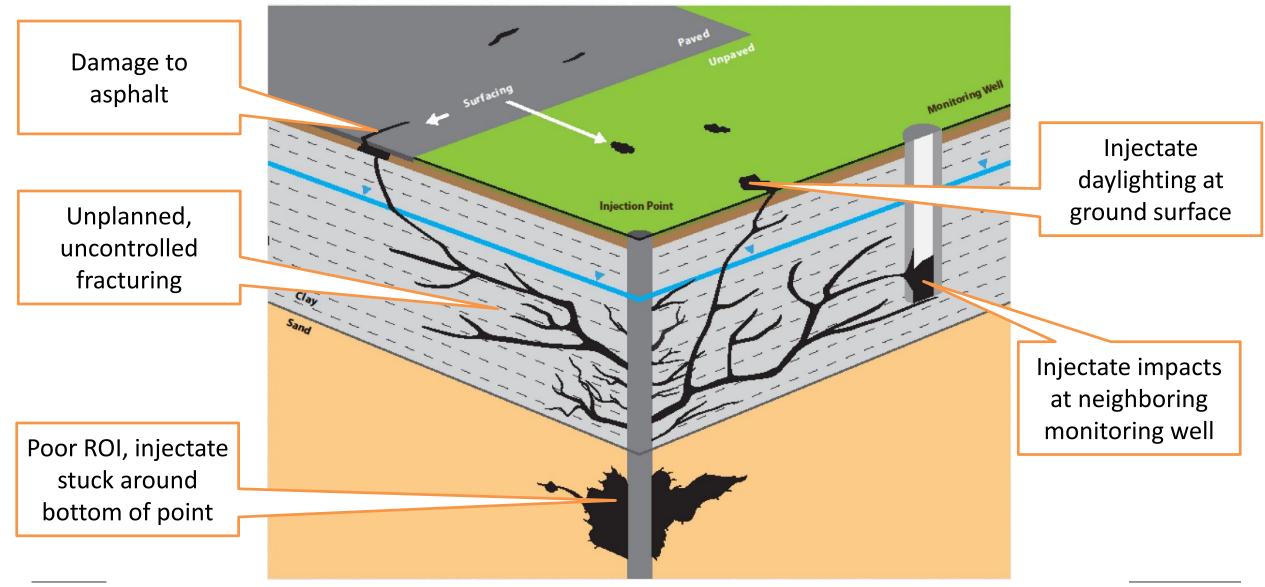
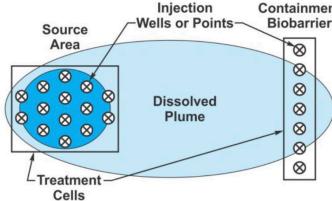


Figure source: Tom Fox at the Colorado Department of Labor and Employment – Division of Oil and Public Safety https://www.neiwpcc.org/tanks2015old/tanks2015presentations/3-Tuesday/Carbon-Based%20Injections/fox.carbon_injection.tuesday.pdf

Example DPI Implementation Problems and Potential Solutions


Geosyntec consultants

Problem	Example Solution (Partial List)
Difficulty advancing	Use a more powerful DPT rig.
DPT injection rod	Use smaller diameter rods.
	Increase injection flow rate.
	 Use a different drilling method to advance through refusal zones
Injection tool plugging	 Increase concentration of sheer-thinning fluid (guar gum).
	 Increase injection flow rate.
	 Flush tooling after each injection interval.
Injectate daylights to	 Avoid subsurface utilities such as sewer, water, electric, and fiber optic cables
ground surface	Skip the shallowest interval
	 Decrease the volume of slurry injected per point in the shallow intervals.
	Lower injection pressures.
Insufficient volumes of	 Increase the number of injection points
slurry injected due to	 Increase the slurry concentrations to lower injection volumes.
backpressure	Increase injection pressures.
	 Replace injection nozzle with a smaller port size (increases injection velocity)
Excessive wear of	 Use equipment capable of handling solid suspensions with characteristics of the
_ injection tools	selected amendment.
	 Inspect tools after each location and replace as necessary.

Injection sequence – some best practices

- Both top-down and bottom-up injection have been used
- ✓ top-down succeeds more often
- Pressure-activated tip is more successful with top-down approach; prevents plugging during advancement between injection intervals
- Bottom-up approach creates preferential pathway for downward migration of injectate during retraction of the rods, resulting in pyramid-shaped distribution
- Bottom-up may be successful when target formation permeability decreases with depth
- Work from outside -> in. From low concentration areas, toward high concentration areas
- ✓ With grid injection designs, avoid consecutive injections into adjacent locations; move to give geologic formation pressures time to dissipate

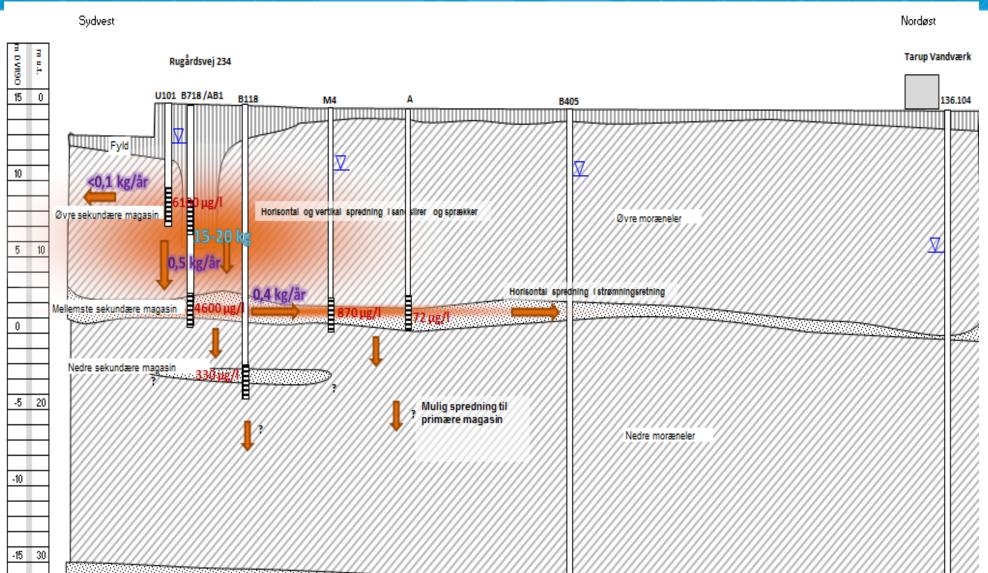
Injection point spacing and layout – best practices

- Account for groundwater flow rate, groundwater geochemistry, and reagent consumption rates – consider objective residence time in treatment zone
- Apply a factor of safety in injection point / ROI coverage of target treatment area
- ✓ Overlap ROIs. Use denser grid spacing in higher COC areas
- ✓ Use multiple rows of injection points in PRBs
- ✓ At many sites, three or more rows may be needed to provide a sufficient residence time and treatment longevity.
- Alternate injection depths in adjacent injection points to improve coverage
- Select amendment dose that accounts for consumption/degradation by all reaction and physical processes

Geosyntec^D

Injection Volume – Best Practices

- ✓ Total injection volume is determined differently between high viscosity (e.g., mZVI) and low viscosity amendments (e.g., CAC, nZVI).
- For mZVI, amendment dosage drives volume slurry volume is calculated by dividing total mass of amendment by the amendment concentration in the slurry
- ✓ For colloidal amendments (CAC, nZVI) that are injected as diluted and stabilized suspension using low pressure, the injection volume target is to 25% to 50% of effective PV.
- ✓ Pilot testing should be used to assess the ability of the target formation to accept the calculated injection volume.
- ✓ A delicate balance exists between injection volume, concentration, ROI, and cost
 - Advighting of injectate at the ground surface can occur if the injection volume exceeds the capacity of the geologic matrix in the TTZ. In this case, the amendment concentration in the injectate could be increased to reduce the overall injection volume.
 - If volume is decreased, ROI may also decrease, and injection spacing may need to decrease, and DPT cost may increase

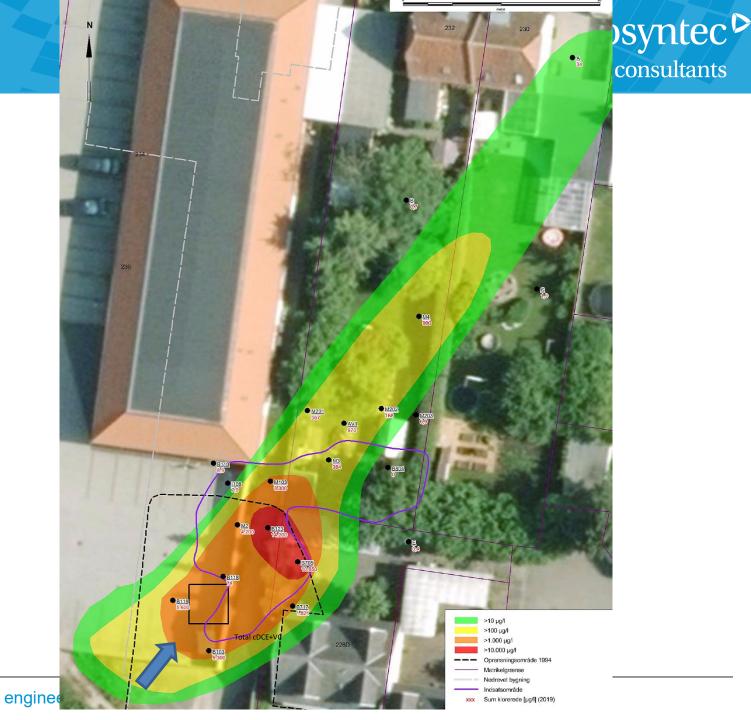


RUGARDSVEJ 234, ODENSE

A Feel-Good Story Involving DPT This is How We Do It

Geosyntec consultants

Conceptual Site Model



engineers | scientists | innovators

cVOC (cDCE + VC) in Sand Unit

Pre-remediation conditions:

- 15-m wide combined cDCE/VC plume.
- TCE present at trace concentration even in the source zone.
- Off-site plume migration to a well 100 m downgradient.
- The highest total VOC. concentration detected in the source zone 14 mg/L.
- GW velocity in sand estimated at between 0.24 m/d.

Design and Injection Point Layout

Geosyntec Consultants

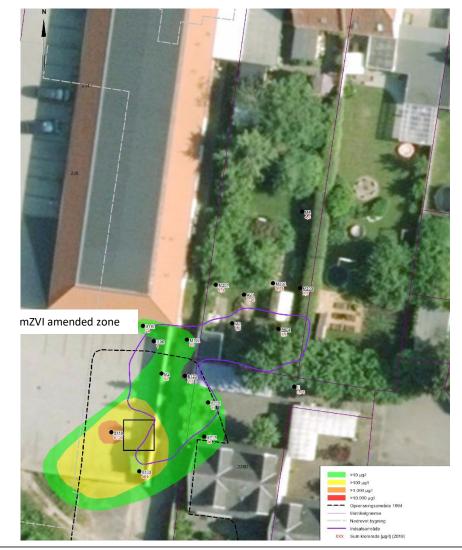
- mZVI application dose: 1.5%wt to soil (5-7 ft thick sand layer, starting from 35 ft bgs).
- 40 DPT injection points 8 ft on center.
- 5 injection intervals in each DPT point (660 lb. mZVI per point).
- mZVI delivered in a guar gum slurry (300 g/L ZVI, 6 g/L GG), along with KB-1 (0.5 L per IP).
- DPT injection using a using a pressure activated tool (Geoprobe) and a high pressure grout pump.

mZVI Injection Process

Geosyntec consultants

DPT Injection Tip

Plugging of the tip during top-down injection (settling of mZVI during transition between injection intervals). Change was made to flushing out the rods with anaerobic water before transitioning to the next lift.


5-yr Results of mZVI Remediation

Geosyntec consultants

VOC plume prior to mZVI Injections

VOC plume 5 years after mZVI Injections

engineers | scientists | innovators

Want to learn more? Download the DPT Practitioner's Guide at: https://kmiregh.kontainer.com/folder/267735