## The SPIN<sup>®</sup> injection technology:

TR

**NJECTIS** 

Basic principles and practical experiences of 95 injectionbased soil and groundwater remediation projects

> Dr. Eng. Jeroen Vandenbruwane CEO Injectis

NJECTIS



Injektionsbaseret afværge til oprensning af forureningsfaner – State of the Art - heldagsmøde

NJECTIS

Injection-based soil remediation: *How to hit the bullseye ?* 





## Injection-based soil remediation: How to hit the







## Injection-based soil remediation: *How to bullseye ?*

Innovative solution for in situ soil remediation





\*Source graph: Technical Report TR-NAVFAC-EXWC-EV-1303, "Best practices for injection and distribution of amendments", Battelle Memorial Institute and NAVFAC Alternative Restoration Technology Team, March 2013

# Injection-based soil remediation: *How to* bullseye ?



Pollutants present in and adjacent to natural soil pores

→ Reagents to be injected in this porosity



## Injection wells & recirculation systems Sand GW **V** Substratum In SANDY aquifer (homog.) $\checkmark$



High VOLUME injected Low COST

JECTIS Innovative solution for in situ soil remediation







#### Conventional *direct-push* injection DP DP Silt/clay **1.SMEARING OF THE SOIL** → Permeability (K<sub>sat</sub>) Pressure 2.COMPACTION → Permeability (K<sub>sat</sub>) \\\ FP (Fracture Pressure) $\mathbf{Q}_{inj} pprox \mathbf{K}_{sat} \cdot \mathbf{P}_{inj} \cdot \mathbf{A}_{contact}$ Substratum Hydr Pinj 77 static S A<sub>contact DP</sub> is very small **Injection Window** (FP – Pp) Pp (Pore Fluid Pressure) **NJECTIS**

 $P_{injection} > P_{critical, fracturation}$  to maintain  $Q_{inj}$ 

GW 🔻

Innovative solution for in situ soil remediation

## Conventional *direct-push* injection



Innovative solution for in situ soil remediation

**NJECTIS** 



1.SMEARING OF THE SOIL → Permeability (K<sub>sat</sub>)

2.COMPACTION → Permeability (K<sub>sat</sub>) \>

$$\mathbf{Q}_{inj} \approx \mathbf{K}_{sat} \cdot \mathbf{P}_{inj} \cdot \mathbf{A}_{contact}$$

$$\mathbf{P}_{inj} = \mathbf{Q}_{inj}$$

**3.FORMATION OF A CANAL** 





Innovative solution for in situ soil remediation

## **Fracturing / jet injection** $Q = -K_S A \frac{dh}{dz} (Darcy's law)$

#### When and why fracturing or jet injection :

- Accidentally by DPT in low perm soils (compaction around injection head)
- Accidentally by increasing injection pressure to maximize injection flow rates (time!)
- To achieve (economically) feasible injection flow rate (Q<sub>ini</sub>) in low perm. soils
- To "inject" slurries in fine textured soils (d<sub>particle</sub> > d<sub>pore</sub>)



Innovative solution for in situ soil remediation



## Fracturing / jet injection

#### Points of attention with fracturing / jet injection :

- By definition: reagents injected in "artificial" cavities, not (directly) in natural porosity
- Time needed for diffusion into natural "inter-fracture" porosity (cfr. longevity)
- In case of slurry; particles do not move in natural soil porosity (compaction, d<sub>pores</sub>⇔d<sub>particles</sub>)
- Poor control on fracture direction (path of least resistance)
- Reagents loss (surfacing, arrival in non-polluted zones, short-circuiting to wells,...)
- Bleed-off / refluxing after retraction of injection head (cfr. DPT in low perm soils)
- Heavings might be an issue



Innovative solution for in situ soil remediation

**NJECTIS** 



After T. Fox Petroleum Remediation Using In Situ Activated Carbon, 2015, Proceedings of the 25<sup>th</sup> National Tanks Conference, Phoenix Arizona







## SAUN® in entrophe entropy: bullseye (anno 2015)





### SPIN<sup>®</sup> injection technology: *How we though* the bullseye Conventional direct-push injection Fracturing jet injection

Other advantages:

V No permanent infrastructure 🛇 Blow

<sup>3</sup> V Fast

Sand

In SANDY aquifer (hor Depth Adapted injection Relatively low COST

GW V

**NJECTIS** 

**Direct-push: hammering and** compaction on basis of main problems/limitations

Other lin

**W**NJECTIS

S Reflux

S Fracture

Injection pressure is the key parameter

3. Contact between pollution and reagent

A Reagents to be injected in this porosity

selection of injection technique: Selection of injection rectinique; Pollutants present in natural soil porosity

In situ soil remediation: How?

SUJECTIS

**NJECTIS** Innovative solution for in situ soil remediation

 $Q = -K_S A \frac{dh}{dz} (Darcy's \, law)$ Keeping K<sub>s</sub> as high as possible, increasing the A and maximizing the dh/dz, but < P<sub>fracture</sub>

de (Darcy's law)

## SPIN<sup>®</sup> injection technology: *How to hit the bullseye*





#### 1. A new patented head

- $\checkmark\,$  Avoids compaction of the soil
- Avoids channel formation (hammering)
- ✓ Opens the soil progressively
- ✓  $K_{sat}$  not altered
- ✓ Increased contact surface A
- $\checkmark\,$  Allows working at low pressure
- Close the injection point (no backflow)  $O = -K_0 A \frac{dh}{dh}$

Innovative solution for in situ soil remediation

2. Coupled to a processor and pressure control system

- ✓ Can detect hydraulic conductivity in real time
- Can adapt the pressure cm/cm to the geology
- More certainty about a homogenous distribution





In SANDY aquifer (homog.)
 Depth Adapted injection
 No significant advantage

Innovative solution for in situ soil remediation

JECTIS

ection V Low pressure Intage V Homogeneou

In soil with LOW permeability
 Low pressure > without Fracture
 Homogeneous distribution

In HETEROGENEOUS soil
 Homogeneous distribution

### Practical experiences: *How we hit the bullseye* (2015 – 2022)





#### **General statistics:**

- ✓ 95 injection projects (44 pilot tests) 51 full scale)
- Belgium, France, Spain, Germany, the Netherlands, Denmark, Sweden
- ✓ 2.083 injections between 0 and 30 m-bgl
- ✓ 21.399 meters injected
- ✓ 5.061.584 liters injected (2 Olympic swimming pools)
- ✓ All reactions, nearly all reagents
- ✓ 100 % heterogeneous and low permeability aquifers
- ✓ 45% other injection techniques tested but inadequate



- liquid activated carbone-donor (short-living)
- e-donor (mid-living)
- e-donor (long-living)
- e-acceptor (oxygen source)
- e-acceptor (sulfate)
- chemical reductant (soluble)
- chemical reductant (particulate)
- chemical oxidant (Ca-peroxide)
- chemical oxidant (persulphate)
- Base





## Practical experiences 2015 2022 Monitoring well

#### Pilot test design (as part of RDC):

- ✓ Maximize information with minimum # injections
- ✓ 7 injections in certain geometric configuration
- ✓ 3 (clusters of) monitoring wells
- ✓ Average price: ± € 20.000







## Practical experiences 201

#### Information from pilot tests:

Innovative solution for in situ soil remediation

- Can we reach the desired depths ? (size doesn't matter)
- ✓ Geology "injectable" at an economically feasible Q<sub>inj</sub> ? (≈3
- ✓ Can the selected reagent be injected at non-fracture press
- ✓ Desired volume be injected homogeneously over the sele
- ✓ ROI in different layers (arrival in MWs) ?
- ✓ Desired reaction observed short-/mid-term ?
- $\checkmark\,$  Longer term: rebound versus inflow from outside pilot tes





Practical experiences 2015-2022

✓ Injection pressure *versus* injection flow rate



#### Some interesting relationships (lessons learned):

✓ Injection volume *versus* ROI *versus* soil texture

Innovative solution for in situ soil remediation



 $ROI \approx$ 

Low pressure injection => Injection in macropores



Practical experiences 2015-2022

✓ Injection volume *versus* ROI *versus* soil texture



Innovative solution for in situ soil remediation

## $\mathsf{ROI} \approx \frac{1}{K_{s,rel}}$

Low pressure injection  $\Rightarrow$  Injection in macropores  $\Rightarrow$  % MP depend on soil texture

$$\mathsf{ROI} = \sqrt{\frac{V_{inj}}{(\pi \cdot \varphi_{inj})}}$$



Practical experiences 2015-2022

✓ Injection volume *versus* ROI *versus* soil texture



Practical experiences 2015-2022

✓ Injection volume *versus* ROI *versus* soil texture



NJECTIS Innovative solution for in situ soil remediation

#### Some interesting relationships (lessons learned):

✓ Number of injection points *versus* injection volume per injection



 $\begin{array}{l} \text{Maximizing V}_{\text{inj}} \text{ per injection point} \\ \Rightarrow \text{Maximize ROI per injection point} \\ \Rightarrow \text{Reduces # injection points} \\ \text{But...} \end{array}$ 

Rarely perfect "cilinders"





Practical experiences 2015-2022

✓ Number of injection points *versus* injection volume per injection



Exemple: 1.000 m<sup>2</sup>, 1-11 m-bgl, 3% vol

**NJECTIS** Innovative solution for in situ soil remediation

#### Some interesting relationships (lessons learned):

✓ Cost *versus* quality



#### Some interesting relationships (lessons learned): ✓ Cost reduction *versus* high resolution site characterization (HRSC) SENISSA-MiHPT 104 EnISSA-MiHPT 105 ailteneg EnISSA-MiHPT 108 EnISSA-MiHPT 103 EnISSA-MiHPT\118 EnISSA-MiHPT 107 EnISSA-MIHRT 117 EnISSA-MIHPT 116 EnISSA-MIHPT 109 EnISSA-MiHPT 106 EnISSA-MiHPT 115 26N3 26H3 EnISSA-MiHPT 110 **SENISSA-MiHPT 120** SEnISSA-MiHPT 111 26A4 26K3 28N EnISSA-MiHPT 114 EnISSA-MiHPT 113 EnISSA, MiHPT 119 Altis B.V. EnISSA-MiHPT 112 Rijksweg, 9870 Zulte . . . . . . . JECTIS

Innovative solution for in situ soil remediation

Total estimated remediation cost: €1,2 Mio RDC: ISCO with permanganate lab tests: different dosages ⇒ Additional HRSC (23 Enissa-MIP drillings) ⇒ 3D-model

#### Some interesting relationships (lessons learned):

✓ Cost reduction *versus* high resolution site characterization (HRSC)



Total estimated remediation cost: €1.2 Mio **RDC: ISCO with permanganate** lab tests: different dosages

- $\Rightarrow$  Additional HRSC (23 Enissa-MIP drillings)
- $\Rightarrow$  3D-model
- $\Rightarrow$  Overlay with injection points

#### **Result:**

- Injection trajectory exactly known
- Dosage exactly known (3D)
- $\Rightarrow$  50 % reagent saving
- $\Rightarrow$  30% overall cost saving
- $\Rightarrow$  Time saving !



Innovative solution for in situ soil remediation



## Sieving out around injection point $(d_{particle} > d_{pore})$ : - Clogging of soil pores $(P_{inj} \uparrow, Q_{inj} \downarrow \downarrow)$

**m-bgl** bar

L/min

No distribution of reagents (droplets, particles) -

High pressure injection might be a solution, but...



# **NJECTIS**

### Thank you

PhD. Eng. Jeroen Vandenbruwane Managing director jeroen@injectis.com BE. +32 474 36 85 45

www.injectis.com