

Injection of slurries – 20 years of lessons learned

Gabriele Giorgio Ceriani In-Situ Services Team Leader Ejlskov A/S

Presentation Layout / Agenda

- Ejlskov / RPI Group Structure and Project Approach Overview \bullet
- **Remediation Design and Implementation** ightarrow
- Case Studies ightarrow
- Q&A Session

JOIN OUR MISSION - CLEANING UP THE EARTH

RPI Group and Activated Carbon - Why?

- Use well known in the industry \bullet
- Highly flexible for in-situ applications
- Applications can be made predictable when designed correctly
- AC use needs to be combined with a treatment mechanism prior to injections – adsorption alone will not work
- Some pores transport and some adsorb (think highways and parking lots)
- Size matters granular vs. powdered vs. colloidal (microbial growth suffers as particle size decreases) – RPI Group works with GAC and PAC based products

JOIN OUR MISSION - CLEANING UP THE EARTH

5 grams of carbon has an internal surface area equivalent to the surface of a professional football field

RPI Group / Ejlskov – In a nutshell

- RPI Laboratory has supported clients and projects with analyses of 150,000+ soil and GW samples (free of charge)
- Hundreds of years of combined experience in design and injection of slurries / solid amendments
- Over 6,000,000 kg of GAC and PAC products installed since 2002 (~7-8% installed by Ejlskov since 2010)
- An estimated additional 30% of supplemental solid amendments have been installed in the same period across the same projects
- 40 to 50 million liters of slurries injected
- 1000+ completed sites more than 90% of clients who have used RPI approach and • technologies once have come back at least one more time to complete a project Injections completed in 15 countries globally, 5 continents and across more than 90% of the US

JOIN OUR MISSION - CLEANING UP THE EARTH

RPI Group / Ejlskov "End to End" Plan

3. Active Remediation

- Conduct remediation / injection works
- Use of RDC data allows for efficient use of remediation budget

4. Performance Monitoring

• Soil and groundwater data to be compared against baseline values based on agreed monitoring programme

Remedial Design Characterization (RDC)

- RDC will tell you how much and where
- High frequency qualitative and quantitative data used to establish contaminant mass
- and most efficient injection design to reach criteria
- field technician experience / understanding of injection design is critical

• Move focus from compliance data to remedial design data – site is contaminated (good to know)

distribution (transition zones, thin layer of low/high permeability soils can easily be missed) • In saturated soils, the estimated contaminant mass based on groundwater data only, can be under-estimated by 80-90% compared to an estimate based on high-frequency soil data • Understand the link between soil contaminant mass (volume/distribution) migration pathway

• RDC effort allows to understand drilling conditions at the site – injection technique, possible issues and alternative solutions can be planned up front based on information gathered on site –

A proper RDC campaign will require between 5 and 15% of the preliminary REM budget

PRE-REMEDIAL DESIGN

- 425 soil samples analysed free of charge ulletSept 2017
- In-situ remediation completed in May - \bullet June 2018
- <u>Pre-drilling followed by Direct Push</u> \bullet injections (11 m of dry sands to go through)
- Site closed in Q2 2021

JOIN OUR MISSION - CLEANING UP THE

Remedial Design (Case Study)

POST-REMEDIAL DESIGN

JOIN OUR MISSION - CLEANING U

Evolution of injection equipment – early 2000s

Installation / Injection Features – Key to success

- Mixing of slurry on site
- Top down injections one for every 0,5-0,6 meter
- Different system pressure settings from 0 to 170 bar and flow rates varying from 30 lpm to 920 lpm
- Nozzles set ups allowing for 40 to 220 km/h exit velocity
- Soil separation (clayey soils) vs. turbulent mixing (sandy soils)
- Injection Hoses no loss of product in rod joints

- Injection grid spacing is a function of lithology, contaminant distribution, volumes and amount of products to inject
- Never exceed with volumes by enlarging the injection grid (risk of daylighting and poor distribution)
- Consider pre-drilling if geology conditions require
- Geophysics investigations for bedrock applications

JOIN OUR MISSION - CLEANING UP THE EARTH

• Injection Volume vs. Slurry Density

Injection evidence

Daylighting – how to interpret and understand it?

- IT WILL HAPPEN AND YOU HAVE TO LIVE WITH IT and IT IS NOT ALWAYS BAD
- Assess daylighting dynamics instantaneous vs. delayed
- Try completing the injection point and re-evaluate approach
- JUST... DO NOT skip intervals or lower the flow rate remember how the CSM looks like and which migration pathways must be addressed
- Verify previous boreholes conditions in the vicinity of the injection points (soil cores, GW wells, injection points)
- If needed, over-drill old locations and seal them with bentonite
- Think at the large picture it's not one injection point which guarantees success
- Re-evaluate injection volumes do not alter amount of product (play with density)
- Re-evaluate grid spacing (volume and pattern)
- Re-evaluate installation sequence scatter the injections
- Learn from all the above and find the best way forward
- Teach drillers to seal holes and install GW wells properly (especially geotechnical surveys)

JOIN OUR MISSION - CLEANING UP THE

No daylight inside the well. Only outside???

63 mm – 15 m long GW well removed by hand from the borehole???

> 90 mm open borehole to 10 m???

Key Wells Reduction % Trends

Above – overall trends of monitoring wells (Benzene % reduction trends are shown) part of the performance-based contract – from LNAPL concentrations to below site-specific criteria in less than 3 years

On the right – the importance of removing a migration pathway. Limestone aquifer GW well not addressed by injections. Removal of contaminant migration pathway from the upper soils allowed passive reduction of BTEX concentrations

ed No Further .8						
t-17	Jan-18	May-18				
9%	95%	95%				
2%	95%	99%				
3%	94%	89%				

Source and plume treatment -Copenhagen – Case Study

Parameter		Sum BTEX	Benzene	Toluene
Quality Critera		-	1	5
Well	Date	µg/I	μg/l	μg/l
KB2-B	Feb 2013	4,321	4,200	2
KB2-B	Mar 2013	4,900	4,800	< 1,9
KB2-B	May 2013	344	330	< 1
KB2-B	Aug 2013	385	373	<1,2
KB2-B	Nov 2013	264	260	< 2
KB2-B	Feb 2014	359	340	< 2
KB2-B	May 2014	221	210	< 2
KB2-B	Aug 2014	100	96	0.11
KB2-B	Dec 2014	360	350	0.28
KB2-B	Feb 2015	310	280	5.5
KB2-B	Mar 2015	440	420	1
KB2-B	Jul 2015	205	200	< 3
KB2-B	Aug 2015	105	98	< 5
KB2-B	Feb 2016	48	42	< 6
KB2-B	May 2016	12	10	<2
KB2-B	Aug 2016	12	9	< 2
KB2-B	Nov 2016	10	7	< 2
KB2-B	Jan 2017	41	7	17
KB2-B	May 2017	16	14	1
KB2-B	Oct 2017	< 0,01	< 0,01	< 0,01
KB2-B	Jan 2018	22	22	0.15
KB2-B	May 2018	0.16	0.041	<0.02

Source and passive plume treatment – Confidential Site - Case Study

Soil validation samples in 2022 showed 30-40% mass reduction from an initial 15,000 kg PCE in soil – DNAPL observed in source area well has not been observed since Q1 2021 (40 cm measured pre-injections) – Injection zones are marked in RED

EJLSKOV

initial 80,000 - 100,000 μg/L

