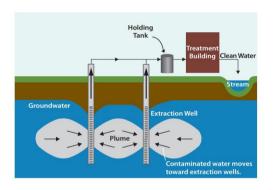
Degradation of chlorinated solvents using biochar as catalyst

Hans Christian Bruun Hansen

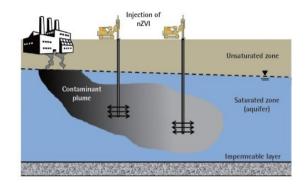
Environmental Chemistry
Department of Plant and Environmental Sciences
University of Copenhagen

Halogenated compounds – environmental POP nightmares!


Halogen substitutions in organic compounds make them more durable, less soluble, more lipophilic, thermal stable, and not easily ignited. This is also what make them nasty pollutants \rightarrow Stockholm Convention.

Chlorinated compounds (solvents, insecticides, lubricants, coolants…) the first to show up (Rachel Carson)

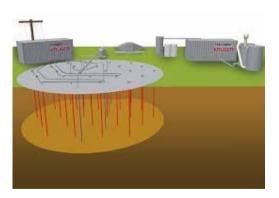
Brominated compounds (solvents, fuel additives, flame retardants)


Fluorinated compounds (surfactants in a huge number of applications, flame retardants)

Chlorinated solvents cleanup – multiple solutions

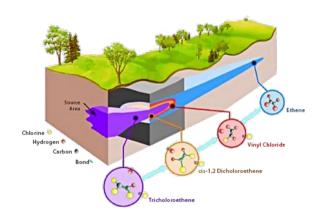
Pump and treat

- Time consuming (> 30 y)
- Energy demanding



https://www.bioenergyconsult.com/zero-valent-iron/

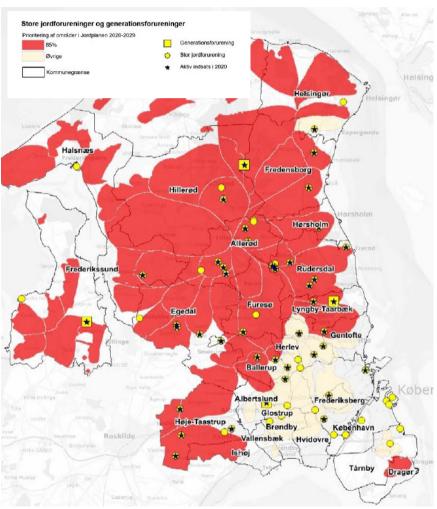
Zero-valent iron (ZVI)


- Not all ZVI capacity available
- Reacts with water (H₂)
- ZVI passivation; repeated treatment

https://enviraj.com/envipedia/pump-and-treat.html

Thermal desorption

- Energy intensive
- Soil destructive



USEPA

Microbial dehalogenation

- Biostimulation
- cDCE and VC may accumulate
- Bioaugmentation (e.g. Dehalococcoides)

Chlorinated solvents dominating

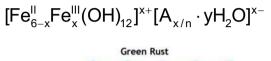
RegH: Indberetning om Jordforurening 2020

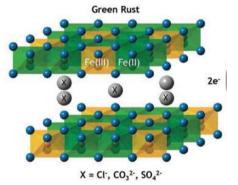
145 **large contaminated sites** in Denmark; 65 located in Region Hovedstaden

BTEX, PAHs, heavy metals, chlorinated solvents, etc.

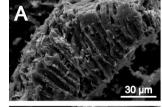
10 **XXL contaminated sites** ("generations-forureninger") in Denmark; 4 located in Region Hovedstaden

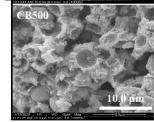
- Collstrop site arsenic (copper, chromium)
- Lundtoftevej, Lyngy chlorinated solvents
- Naverland, Albertslund chlorinated solvents
- Vestergade, Skuldelev chlorinated solvents

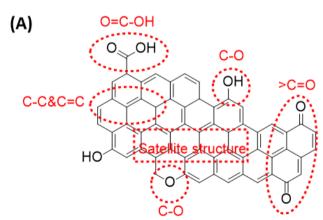

Green Rust and Biochar

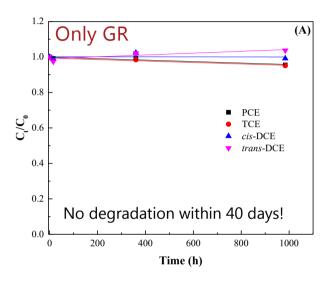

Green Rust. A layered blue-green iron(II)-iron(III) hydroxide.

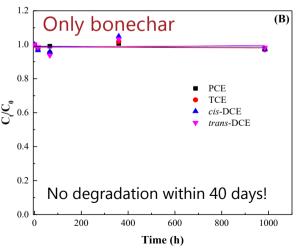
- Highly reactive reducing agent.
- Easy to synthesize.
- Sensitive to oxidation.
- Single particles about 1 μ m wide

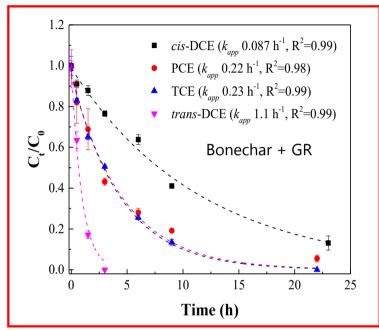

Biochar: Produced by pyrolysis of biomass (300 – 1000 °C) in absence of oxygen. Properties extremely dependent on which biomass is used.

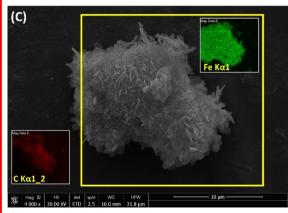






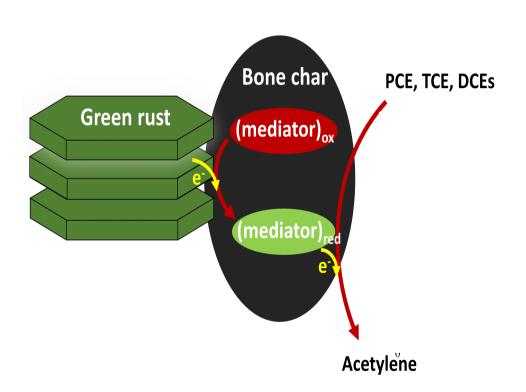






New discovery: Bone char + Green Rust

Bonechar coated with GR particles

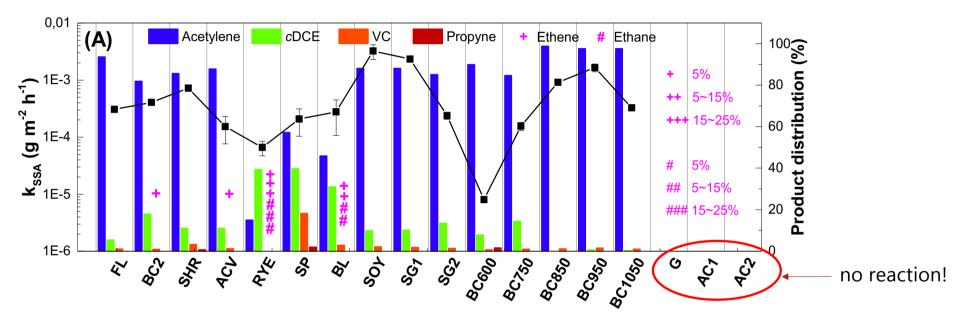

Reactivity rate sequence:

trans-DCE > TCE ≈ PCE > cis-DCE

- Acetylene is the main product.
- Chlorinated ethylenes fully dechlorinated and detoxified
- Rate constants same order of magnitude as with nZVI and S-nZVI

Jing Ai (2020)

Reaction platform

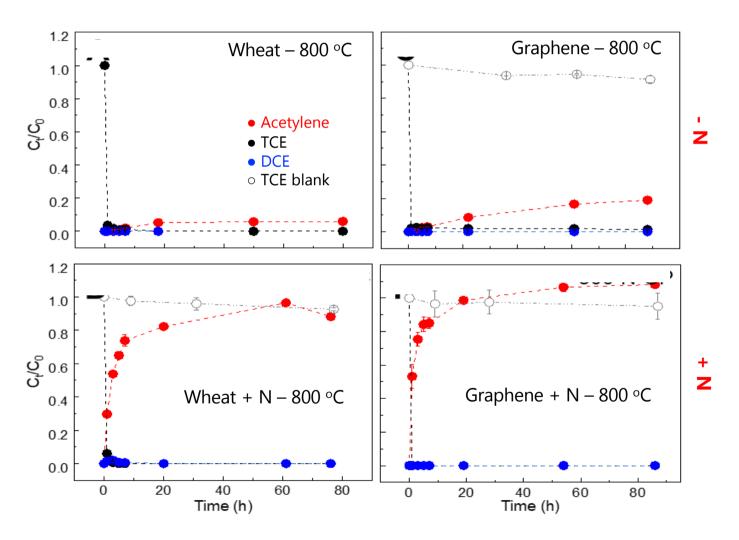

Biochar triple role: Sorption + electron mediation + reactive site

Green Rust provides the electrons

Optimization of reactivity

- Biochar electrical conductivity
- Biochar reactive groups capacity ("battery")
- Green rust biochar connectivity
- Sorption properties
- Particle size
- Steric factors?

Biochar is not just biochar

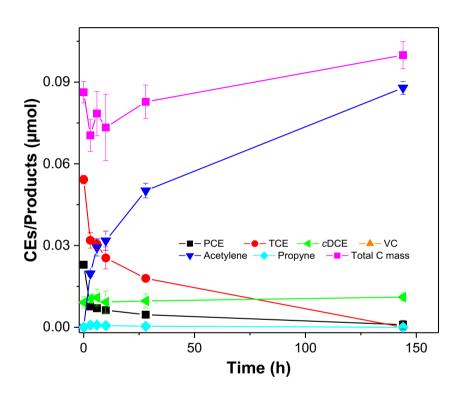


Reduction of TCE in GR-biochar/carbon systems (**FL, BC**: bone meal, **SHR**: shrimp, **ACV**: anchovy, **RYE**: rye, **SP**: algae, **BL**: blood, **SOY**: soybean, **SG1/2**: waste water sludges, **G**: graphite, **AC1**, **AC2**: activated carbon (PT 950 °C)

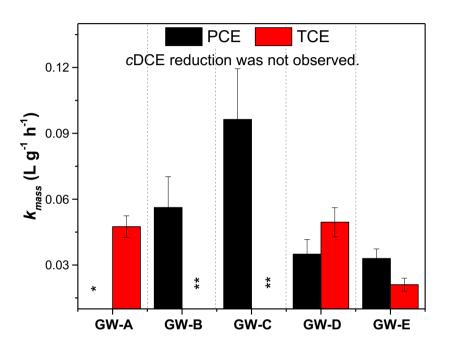
- The substrate is critical for the catalytic ativity. Nitrogen-rich substrates usually show highest reactivity.
- Reactivity increases with pyrolysis temperature up to 950 °C.
- Some biochars may lead to by-products such as DCE and VC.
- Activated carbon is inreactive

Jing Ai (2020)

Nitrogen boosts reactivity

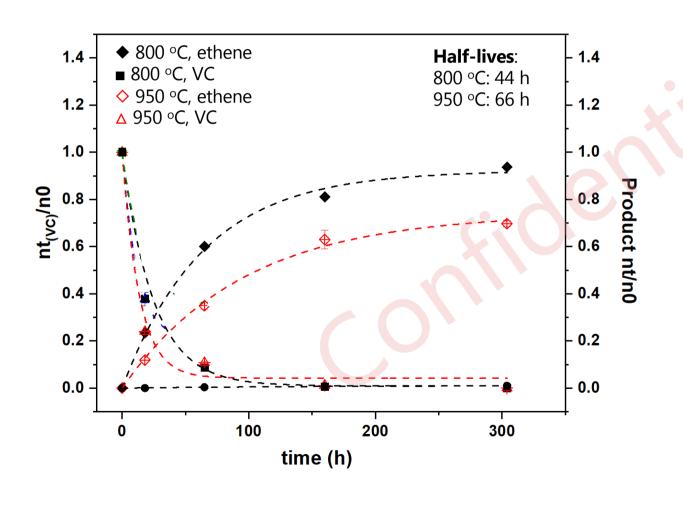


Reactivity of **wheat straw** (BC) and **graphene** (GP) pyrolysed at 800 °C without/with extra nitrogen (urea).


- Reactivity increases dramatically by N amendment
- TCE is rapidly adsorbed and subsequently reduced to acetylene
- Mystery: The N effect has nothing to do with N content!

Hui et al. (2022); unpublished

It works with contaminated groundwater

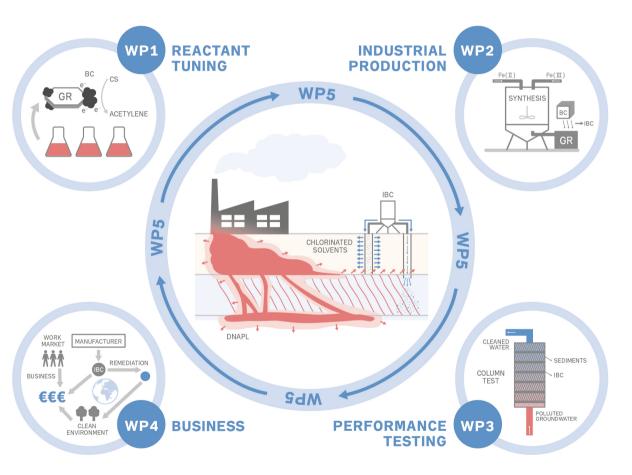

Reduction of PCE and TCE i groundwater from contaminated site, Naverland, Glostrup, Copenhagen

- Rate constant for PCE and TCE reduction in 5 different contaminated groundwaters
- The rate constant is 10 20x slower in ground water compared with lab water experiments
- Bicarbonate (water hardness) the main inhibitor; tested waters have high water hardness

11

...it also degrades vinyl chloride

Reaction sequence: PCE > TCE > DCE > VC

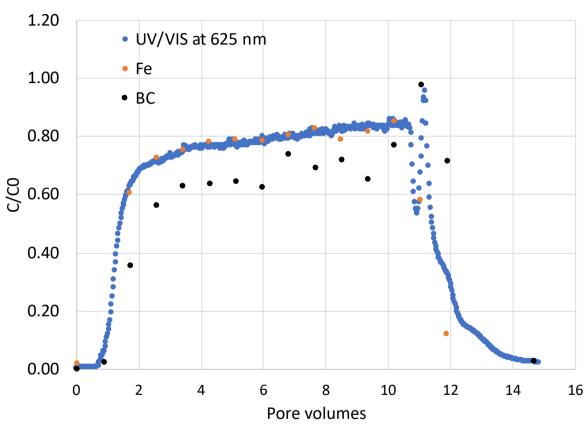

VC is the slowest to degrade, but biochar can also boost that reaction

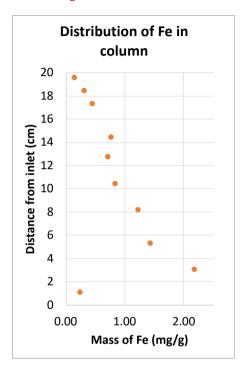
Nitrogen enriched sugar beet residue biochar

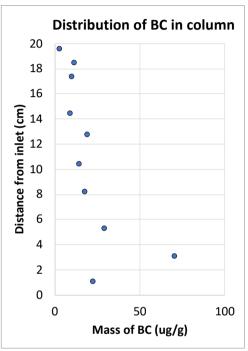
Product of VC reduction is ethene.

GreenCat – an Innovation Fund project

Greenrust-biochar for *in-situ* remediation of chlorinated solvents - 2020 to 2024.







Greenrust + biochar transport in sand

2 g/L green rust, 0.15 g/L bonechar, passed 63 um screen Average particle size 10 um 5 g/L Carboxymethylcellulose (CMC) Dansand (0.5 mm), 2 mL/min

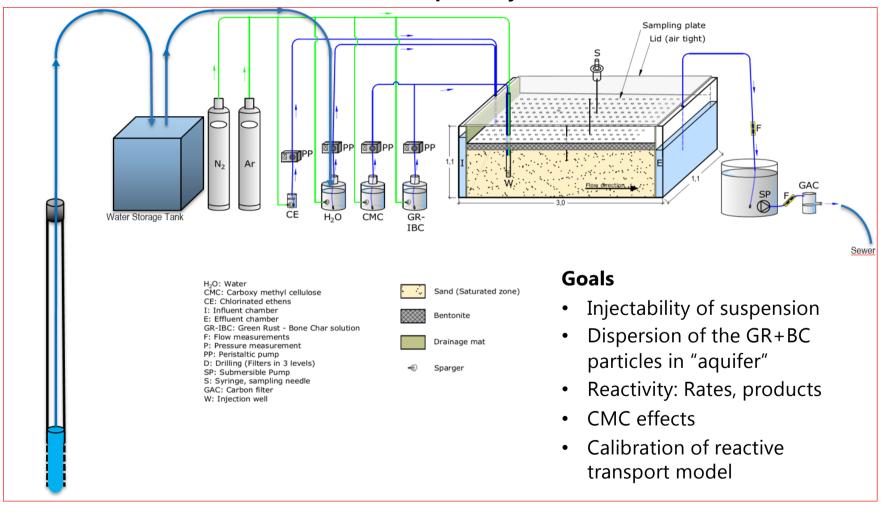
Conclusions

- Fast breakthrough
- Green rust + biochar moves together
- Deposition of the material in the column, but filtering as well

A word on carboxymethylcellulose (CMC)

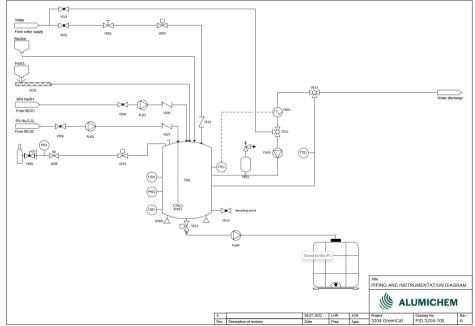
- Needed to make green rust + biochar particles mobile (keep particle aggregation low)
- CMC binds strongly to green rust
- CMC protects green rust from oxidation easier handling and storage
- CMC also blocks for dehalogenation!
- CMC can be flushed away and dehalogenation reactivity restored

$$R = H$$
 or CH_2CO_2H



Experimental aquifer experiment

- Simulate direct push injection -


AlumiChem: New synthesis method + upscaling

- New method (Haldor-Topsoe) to enable upscaling
 Iron(II) sulphate precipitated with NaOH to produce Fe(OH)₂
 Oxidation by potassium persulfate → green rust
- Reactivity independent of when biochar is added!
- Final product has 15 g/L green rust and 0.7. g/L biochar
- Pilot plant ultimo 2022

Safety: Eye irritant.

Spills and disposal: Non-toxic

GR + Biochar profile

- **Green**, sustainable remediation product; waste to value carbon-based catalyst
- **High reactivity** with all known chlorinated ethylenes incl. cDCE and VC; non-toxic products
- Biochar reactivity is independent of sorption
- Not sensitive to temperature (5 25 °C)
- **Specific reaction** GreenCat product reacts specifically with the chlorinated ethylenes with no H₂ production. All redox capacity used for targetted compounds.
- Long shelf-life (at least 6 mths)
- **Longevity** No corrosion shells or passive layers are forming on particle surfaces
- Flexible design the composite can be tailored to target specific contaminant profiles
- CMC triple function: On/off switch, facilitates transport, microbial stimulant
- The GR component can be used for **remediation of other pollutants**: immobilisation/fixation/(reduction) of arsenate/arsenite, chromate, selenate/selenite, uranyl/neptunyl, reduction of nitrate and nitro-aromatic compounds.
- Competitive price

Publications

- Ai, J.; Yin, W.; Hansen, H.C.B. (2019) Fast dechlorination of chlorinated ethylenes by green rust in the presence of bone char. *Environ. Sci. Technol. Lett.* **6**, 191 196.
- Ai, J.; Ma, H.; Tobler, D.J.; Mangayayam, M.C.; Lu, C.; van den Berg, F., Yin, W.; Hansen, H.C.B. (2020) Bone char mediated dechlorination of trichloroethylene by green rust. *Environ. Sci. Technol.* 54, 3643 – 3652.
- Ai, J.; Lu, C.; van den Berg, F.W.J.; Yin, W.; Strobel, B.W.; Hansen, H.C.B. (2021) Biochar catalyzed dechlorination Which biochar properties matter? *J. Hazard. Mater.* 406: 124724.
- Ai, J.; Tobler, D.J.; Duncan-Jones, C.G.; Manniche, M.E.; Andersson, K.E.; Hansen, H.C.B. (2021) Chlorinated solvent degradation in groundwater by green rust-bone char composite: solute interactions and chlorinated ethylene competition. *Environ. Sci: Water Res. Technol.*: d1ew00484k.
- Ma, H.; Ai, Jing; Lu, C.; Hansen, H.C.B. (2022) Enhancement of biochar catalysis by chemical amendments for trichloroethylene dechlorination. *Chem. Engin. J.* 438:132496
- Ai, J.; Hansen, H.C.B.; Dideriksen, K.; Tobler, D.J. (2022) Fine-tuning green rust-bone char composite synthesis for efficient chlorinated ethylene remediation. *Chem. Engin. J. 446:* 136770