

PFAS

Practical experiences on soil investigation and remediation from a site in Amsterdam

Paul Verhaagen www.hmvt.eu

Introduction

Paul Verhaagen

- 30 years experience working as senior consultant and contractor
- Projects in Belgium, The Netherlands, Germany, France, Sweden, Denmark, Japan

HMVT

- Over 30 years experience in environmental engineering, from the start focus on innovative technologies
- Main activities are related to in-situ soil remediation, water treatment, vapour treatment
- Projects in Belgium, The Netherlands, France and Germany

Amsterdam project (2016 – 2019)

- Historical use of the site
- Soil investigation PFAS (2016-2017)
- Definition of remediation targets and remediation approach (2017)
- Remediation (2018-2019)
- Lessons learned future outlook for PFAS remediation

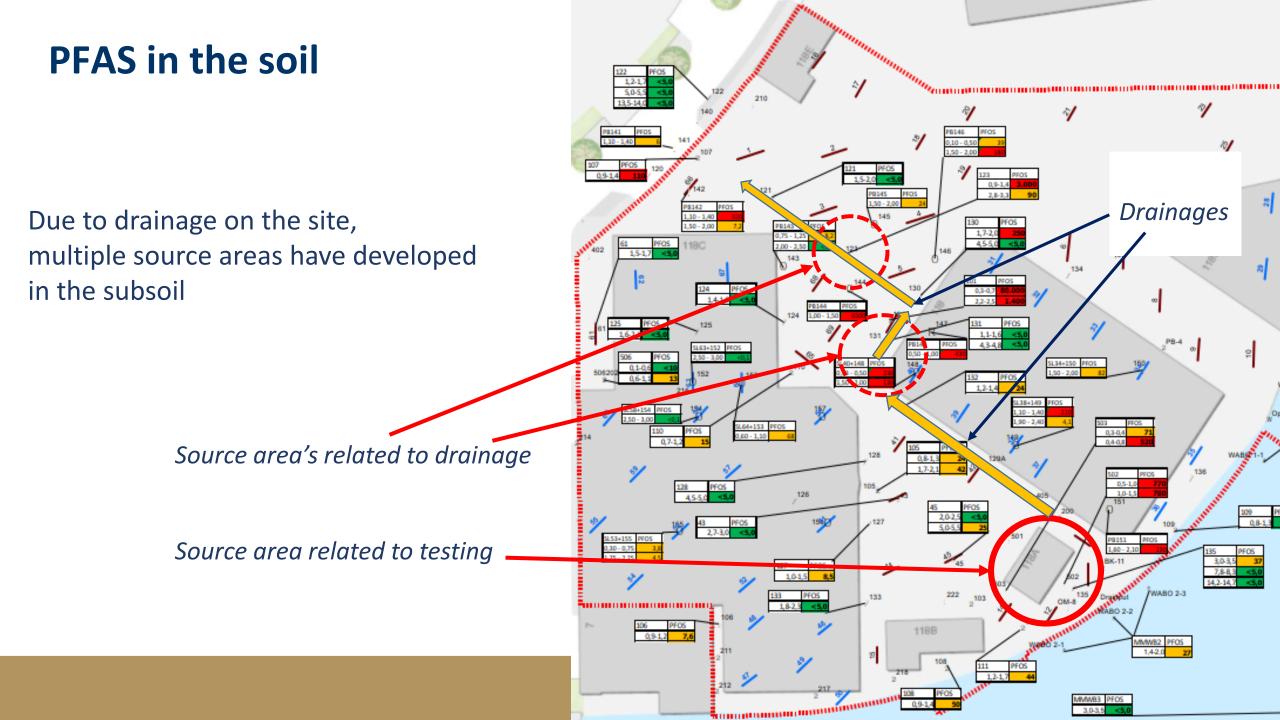
Historical background and use of the site

- Former marshland in the eastern part of Amsterdam
- First industrial use (timber yard) start in 1925
- Later: processing asbestos materials (1934-1970)
- 1970-2016. Fire protection materials
- 2016. End of industrial activities redevelopment

Now: development into a residential area

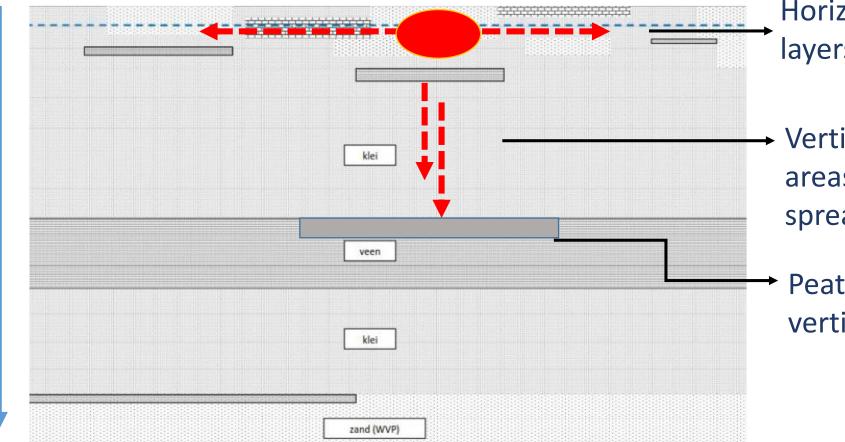
Soil investigation, focus on PFAS

- Key: how was the PFAS used on the site ?
- Find the source areas of PFAS



- Understand the hydrological system on the site (drainage geohydrology)
- <u>Only then:</u> start actual soil investigation
- Always look into the impact on water (groundwater/ nearby surface waters)
- Do not jump to conclusions after a few analyses

Soil investigation PFAS some results


- PFAS on the site consisted for more than >90% of PFOS
- If PFAS are found: both soil + groundwater contain PFAS. Exception: in coarse sand layers only groundwater was impacted.
- Maximum levels in soil samples PFOS: 3.000 mg/kg
- Maximum levels groundwater PFOS: 6.500 μg/l
- The results confirm that hydrological system governs the spreading of PFAS into the soil

Impact soil structure on PFAS spreading

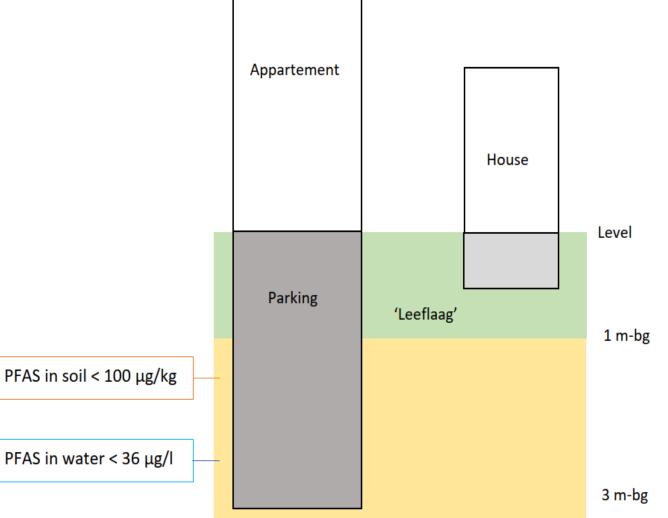
infiltration

Horizontal spreading (via rubble layers, via drainage etc.)

- Vertical spreading at source areas (clay no hinderance for spreading)
- Peat is a hinderance for vertical spreading

This is site specific

Definition of remediation targets PFAS


- In 2016: no set values for remediation PFAS.
- So, start with the basics: what is the aim of the remediation ? To make the redevelopment of the site possible. No remediation no redevelopment.
- Remediation target is the elimination of risks related to a contamination. So, in this case the soil remediation has to remove risks in relation to the future use of the site.
- For this site the situation after remediation:
 - No risks for humans (installing a clean layer of soil –'leeflaag', use of the site apartments, no private garden area's)
 - No ecological risks (clean soil layer)
 - No risk for spreading (removal of source areas)

Remediation targets

2017 accepted remediation targets site: Soil 100 µg/kg Groundwater: 36 µg/l How did we get there? Soil: Use of existing values for a 'neglectable impact on surrounding soil – water quality' *Groundwater:* use of the set level for water **Emissions**.

Most important: the remediation results in the removal of 97% of the PFOS.

Compound			
	Soil (µg/kg)	Groundwater (µg/l) (incl. drinking water)	Groundwater (µg/l) (excl. drinking water)
PFOS	110	0,20	56
PFOA	1100	0,39	70
GenX	97	0,66	140

For the project in 2017: 100 μ g/kg

For the project in 2017: 36 $\mu g/l$

Remediation of PFAS

- > Safety issues for staff during remediation PFAS are basic.
- > **PFAS analyses**: please consider in advance the required lab time
- > The **technologies** for the remediation at this project were basic:
- Excavation of contaminated soil
- Extraction of contaminated groundwater
- > **Treatment** (soil and groundwater) are <u>very</u> complex:
- Treatment / final disposal of soil
- Treatment purification of the groundwater

Treatment of PFAS contaminated groundwater

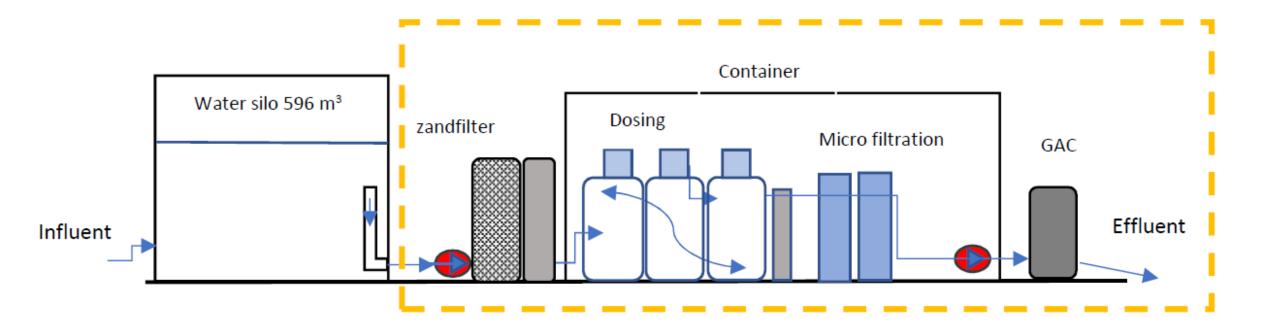
Water treatment applied at the site in Amsterdam

Future outlook remediation technologies

Pilot treatment PFAS

Composition of the PFAS: appr. 85%	
is PFOS (comparable with soil	
investigation).	

Level of PFAS is representative for the site


Treatment efficiency = o.k. Influence of PerfluorAd dosing rate is little

	Project	Untreated		Treated				
	PFC-Verbindung	Rohwasser		Dosing rate PerfluorAd in mg/l				
	in μg/l	0		50	100	200		
	PFBA	0.3		0.3	0.2	0.08		
%	PFBS	2.1		0.008	0.004	0.004		
-	PFPeA	0.8		0.4	0.2	0.03		
	PFHxA	1.6		0.3	0.08	0.03		
	PFHxS	4.6		0.02	0.03	0.04		
	PFHpA	1.0		0.03	0.01	0.01		
	PFOA	2.2		0.03	0.03	0.03		
	PFOS	140		0.4	0.7	1.00		
	PFOSA	1.1		0.006	0.01	0.02		
	PFNA	0.07		<	<	0.001		
	PFDA	0.3		<	0.002	0.003		
	PFDS	<		<	<	<		
	PFUnA	0.03		<	<	<		
	PFDoA	<		<	<	<		
	PFHpS	1.6		0.005	0.01	0.01		
	PFPeS	1.3		0.003	0.004	0.005		
	4:2 FTS	0.05		0.006	0.003	0.001		
	6:2 FTS	5.1		0.2	0.1	0.2		
	8:2 FTS	1.2		0.007	0.02	0.04		
	Summe µg/l	163.35		1.715	1.403	1.504		
	Removal rate			59%	99.10%	99%		

Water treatment: full scale approach for the site

- Flow rate 1,5-2,0 m3/h
- Emission level PFAS <u>1 μg/l (ppb)</u>

Water treatment results

PFBS

0,39

0,48

1

Start September 2018 – stop March 2019

PFHXa

1,9

1

1,6

PFHXs

3,5

3,2

4,3

% share PFOS vs

72%

55%

50%

PFAS total

27,8

13,71

17,4

PFAS

		addition of
	Ormelian	
		·
	The second second second	
	and the second	
a manufacture of the second se	1-2-2-2-	
and the second of the second sec	15	
and the second s		

EFFLUENT Outflow ug/I

Inflow

PFOS

20

7.6

8,7

ug/l

PFOA

1

0,67

0,78

INFLUENT

Date 2018

13-9-2018

18-10-2018

12-11-2018

						% share PFOS	VS	Efficiency rate total	Efficiency rate		Emisie na Aktief kool.	
Date 2018	PFOS	PFOA	PFBS	PFHXa	PFHXs	PFAS	PFAS total	PFAS	PFOS		PFAS total ug/I	
13-9-2018	1,4	0,32	0,18	1	0,56	34%	4,05	93%	93%	13-9-2018	0,7	
18-10-2018	0,94	0,34	0,3	1,1	0,41	25%	3,73	88%	88%	18-10-2018	5,25	GAC desorb
12-11-2018	0,99	0,8	1,2	4,3	0,93	10%	9,98	43%	89%	12-11-2018		emitting to the buffer
	-			\bigcirc						20-11-2018	0,25	new GAC

PFAS water treatment conclusions

Experiences with the selected approach and the technology:

- Emission requirement PFAS 1 µg/l is achievable
- Buffering (water silo) is important to homogenize PFAS levels
- Removal of suspended material from the water is essential

Future outlook on PFAS remediation

> Water

PFAS remediation soil

No (in-situ) remediation technologies for soil treatment available.

In-situ remediation: next 1-3 years no expectations on a breakthrough of a (economical) technology. Bottlenecks:

- Properties PFAS (behaviour in soil)
- Remediation targets required (and potential for reuse of soil)

Treatment of soil (ex-situ). Good option can be washing of (sandy) soils followed by treatment of waste water from the plant.

PFAS remediation water

By 2021 various treatment technologies are available.

Selection of water treatment technologies are always site specific:

- Short remediation time / small flow / low levels: GAC
- Longer remediation time higher flow / higher levels: combination of technologies

Key issue is to prevent waste generated (GAC, others) that has to be incinerated or landfilled.

Thank you

Paul Verhaagen

HMVT Postbus 174 6710 BD Ede www.hmvt.nl