Data-driven hydrostratigraphic modeling

Niels Claes*, Rasmus R. Frederiksen*, Nikolaj Foged*, Hyojin Kim+, Troels N. Vilhemsen* & Anders V. Christiansen*

*AU Geoscience

+GEUS

Motivation

- Incorporation of **structural uncertainty** in groundwater models and transport
 - Structural uncertainty can have a high impact on subsurface transport model results
 - Traditional groundwater models can have difficulties in reflecting this uncertainty

Motivation

- Incorporation of structural uncertainty in groundwater models and transport
 - Structural uncertainty can have a high impact on subsurface transport model results
 - Traditional groundwater models can have difficulties in reflecting this uncertainty
- Redox conditions in the subsurface can be highly heterogeneous and spatial variable
 - Redox conditions can have a complex structure, related to the hydrogeological structure
 - Complex structures result in uncertainty in 3D representation of redox conditions in the subsurface

Motivation

- Incorporation of structural uncertainty in groundwater models and transport
 - Structural uncertainty can have a high impact on subsurface transport model results
 - Traditional groundwater models can have difficulties in reflecting this uncertainty
- Redox conditions in the subsurface can be highly heterogeneous and spatial variable
 - Redox conditions can have a complex structure, related to the hydrogeological structure
 - Complex structures result in **uncertainty** in 3D representation of redox conditions in the subsurface

The goal is to **include** these **complex structures** and associated **uncertainties** in groundwater model structural input

- From data to model
 - ACT modeling
 - Clustering
 - Data preparation

Combining geophysical, geological and geochemical data through multipoint statistics

- From data to model
 - Act modeling
 - Clustering
 - Datapreparation
- Geostatistical simulation
 - Background
 - Application

Combining geophysical, geological and geochemical data through multipoint statistics

- From data to model
 - Act modeling
 - Clustering
 - Data preparation
- Geostatistical simulation
 - Background
 - Application
- Model realizations
 - Uncertainty description

Combining geophysical, geological and geochemical data through multipoint statistics

- From data to model
 - Act modeling
 - Clustering
 - Data preparation
- Geostatistical simulation
 - Background
 - Application
- Model realizations
 - Uncertainty description
- Outlook and Conclusion

Combining geophysical, geological and geochemical data through multipoint statistics

The result is an ensemble of hydrostratigraphic and redox models

- Borehole
 - + Primary source of **lithological information**
 - + Vertical resolution: Good, ~uniform
 - - Spatial coverage: Poor
 - Quality: varying and often unknown

- Borehole
 - + Primary source of **lithological information**
 - + Vertical resolution: Good, ~uniform
 - - Spatial coverage: Poor
 - - Quality: varying and often unknown
- Geophysics
 - + Spatial coverage: Good
 - + Quality: Well-known and often good
 - - Indirect lithological information
 - - Vertical resolution decreasing with depth

ACT modeling

Accumulated Clay Thickness:

Resistivity values to Clay Fraction:

- Based on Borehole lithology
 and Resistivity
- Spatially varying

Point locations (locations and layering of the resistivity models)

ACT modeling

Accumulated Clay Thickness:

Resistivity values to Clay Fraction:

- Based on Borehole lithology
 and Resistivity
- Spatially varying

Point locations locations and layering of the resistivity models) Resistivity Resistivity Resistivity models models models ACT Cluster Data Clustering CF-Model ->-| + modelling preparation model 4 Aditional Boreholes variables

ACT modeling

Point locations (locations and layering of the resistivity models) Resistivity Resistivity Resistivity models models models ACT modelling Cluster model Data preparation CF-Model →I Clustering -→ Aditional Boreholes variables

Clay Fraction [-]:

ACT modeling

Resistivity [Ohm.m]:

Clustering: From Resistivity – Clay Fraction to Hydrostratigraphic Unit

ACT modeling

Resistivity [Ohm.m]:

ACT modeling

Clusters [-]:

Point locations (locations and layering of the resistivity models)

Data preparation

Addition of Redox Training Image

Geostatistical simulation

Direct Sampling:

-Traditional Methods have difficulties to replicate **3D structural complexity**

-Even more complex if correlated **Redox** conditions need to be simulated

Direct Sampling

Simulation with the same geostatistical complexity as the Training Image

Geostatistical simulation

Direct Sampling:

Minimizing risk of uncertainty underestimation

Filter out 'least certain' observations/measurements

Hard Data: data we place in the grid before the simulations, because of high probability

Geostatistical simulation

Direct Sampling:

Training Image: All our measurements/data

Hard Data: data we place in the grid before the simulations, because we are confident in them

Minimizing risk of uncertainty underestimation

Filter out 'least certain data'

Example:

Example:

Example:

Oxidized

Low reduction rates

Higher reduction rates

Example:

Oxidized

Higher reduction rates

Uncertainty description

Cluster Hard Data

Hydrostratygraphy: Realization 1

Hydrostratygraphy: Realization 2

Uncertainty description

Cluster Hard Data

Entropy: 'variability indicator'

Value between 0 and 1:

- 0: no variability between each realization
- 1: each different type **equally represented** among the realizations

Hydrostratygraphy: Realization 1

Hydrostratygraphy: Realization 2

Uncertainty description

Entropy:

Hydrostratygraphy: Realization 1

Hydrostratygraphy: Realization 2

Conclusion

- **Uncertainty** and **complexity** included in groundwater model:
 - We can estimate the uncertainty on the subsurface hydrogeological structures based on collected geophysical and well data

Conclusion

- Uncertainty and complexity included in groundwater model:
 - We can estimate the uncertainty on the subsurface hydrogeological structures based on collected geophysical and well data
- **3D simulation redox** conditions, correlated to hydrogeological structure
 - We developed a method that simulates the subsurface redox conditions that is in agreement with the subsurface hydrogeological structures

Conclusion

- Uncertainty and complexity included in groundwater model:
 - We can estimate the uncertainty on the subsurface hydrogeological structures based on collected geophysical and well data
- **3D simulation redox** conditions, correlated to hydrogeological structure
 - We developed a method that simulates the subsurface redox conditions that is in agreement with the subsurface hydrogeological structures
- **Transparent link** between wells and geophysical data:
 - The workflow from data collection to groundwater model input allows us to track the data through the process

