Redox interpretation and important groundwater chemical results

Hyojin Kim Rasmus Jakobsen, Jens Aamand, Birgitte Hansen

ATV Winter meeting (9.3.2021)

Redox architecture and N fate

- Redox conditions control the fate of N in water
 - No reduction in oxic conditions
 - N reduction in N-reducing conditions
 - Complete N reduction in reduced conditions
- Input data for N retention simulations
 - Subsurface redox architecture
 - N reduction rates
- Complexity of the redox architecture and challenges
 - Upscaling of field measurements
 - Parameterization of N reduction rates

Kim et al. (2019)

• Upscaling of point measurements to 3D scale

Challenges II: Parameterization

- Parameterization of N reduction rates
- N retention map:

$$N_{reduction} = \sum_{i=1}^{n} \left[\tau_i \frac{\partial C}{\partial t_i} \right]$$

 τ_i transit time in redox zone *i* $\frac{\partial c}{\partial t_i}$ N reduction rate of redox zone *i*

- How to get a representative $\frac{\partial C}{\partial t_i}$ for each redox zone ?
 - = Extremely heterogenous N reduction rates at various scales
 - = e.g., <0.1 % of mass of soil responsible for 85% of N reduction capacity (Parkin, 1987)

Redox architecture in glacial landscapes

- Primary controls on the redox architecture development
 - Oxygen influx since the Holocene (~ 11 kyr)
 - Nitrate influx since the Anthropocene
 - Amount and reactivity of the reduced compounds (e.g., organic matter, pyrite)
 - Flow pathways

- Primary controls on the redox architecture development
 - Oxygen influx since the Holocene (~ 11 kyr)
 - Nitrate influx since the Anthropocene
 - Amount and reactivity of the reduced compounds (e.g., organic matter, pyrite)
 - Flow pathways

Geochemistry

Weathering time

• Starts from planning...

Selecting **representative** sampling point

GEUS

• Starts from planning...

Selecting **representative** sampling point

• Starts from planning...

ATV Winter meeting

9/3/2021

- Redox interpretations
 - Multiple redox conditions shifts in many cases

GEUS

- Redox interpretations and upscaling
 - Conceptual interpretation of the redox architecture

(d) conceptual model of geology and redox structure

- Redox interpretation and upscaling
 - Statistical analysis of the groundwater heterogeneity

G

Cluster 4 = (N reduction) pyrite oxidation –nitrate reduction

9/3/2021

Challenge II: Parameterization

• Representative N reduction rates?

- sampling sites were carefully selected based on the structural information but the N reduction rates vary over a few orders of magnitude.

- In general, N reduction rate measurements of each site show a log-normal distribution.

= multiplicative effects may show a log normal distribution

= reduced compounds x microbial density x oxygen free condition

ATV Winter meeting

9/3/2021

Summary: upscaling and parameterization

Summary: upscaling and parameterization

Groundwater chemistry model

tTEN

Lessons learned...

- Geological structure plays a primary role in shaping the redox structure.
- Field measurements are required to locate the denitrifying zones.
- A reduced condition does not necessarily indicate a high N reduction capacity (or rate).
- Denitrification rates vary significantly site to site. Underlying controls on this variability requires further research.
- Solid understandings of the geological structure and the hydrogeochemical dynamics of the catchment is critical to interpret the geophysical information into the redox information.

