Model of the influence of meanders and time varying stream levels on groundwater discharge to streams

Professor Philip J. Binning
Ph.D. studerende Nicola Balbarini
Civilingeniør Ellen Stærk Nicolajsen
Ph.D. studerende Vinni Rønde
Professor Poul L. Bjerg
Motivation and Aims

- Required the evaluation of contaminated sites impact on streams:
 - EU Water Framework Directive
 - New Danish law on contaminated sites assessment

- Lack of knowledge on the discharge variability because of:
 - Meander bends
 - Stream water level changes

- Challenges in designing appropriate monitoring campaigns for contaminant discharge to streams
Study site: Grindsted stream
Study site: Grindsted stream
Study site: Grindsted Stream

![Graph showing Log(Conc.) [ug/L] vs Distance (m) with various contaminants and their concentrations.](image-url)
Model Area and Boundary conditions

Fixed head = 35.25 m

No flow
Conceptual model

Scenario 1
- Recharge
- Fixed head
- No flow
- 580 m
- 550 m
- 380 m
- 330 m

Scenario 2
- Recharge
- Fixed head
- No flow
- 580 m
- 550 m
- 380 m
- 330 m

Quaternary formation
- Sand

Odderup/Tertiary formation
- Miocene sand

Arnem formation
- Miocene clay with internal sand layers
- Bastrup formation
- Sand

DTU Environment
Department of Environmental Engineering
Numerical groundwater flow model

Finite element method in COMSOL Multiphysics

\[\nabla \cdot (K \cdot \nabla h) + \frac{S_y}{b} \frac{\partial h}{\partial t} = R \]

Transient simulation accounting for
- Stream water level
- precipitation

![Graph showing stream water level and precipitation over time](image)
Temporal variations

Screen 6 (8 – 9 mbt.)

- Observed groundwater head
- Stream water level
- Modelled groundwater head: scenario 1
- Modelled groundwater head: scenario 2

Screen 5 (21 – 22 mbt.)
Temporal variations

Stream water level [m] vs. Groundwater discharge to stream [m^3/d]

- Stream water level
- Simulated discharge to stream: scenario 2
Effect of stream meanders

Groundwater fluxes [m/d]

North stream side

Groundwater fluxes [m/d]

South stream side

Groundwater fluxes [m/d]

Stream bed
Effect of stream meanders

Temperature measurements

August/September 2012 – $T_{SW} - T_{20}$

Groundwater fluxes [m/d]

North stream side
South stream side
Stream bed

Groundwater fluxes [m/d]
Effect of stream meanders

Contaminant concentrations

Groundwater fluxes [m/d]
Effect of stream meanders
Effect of stream meanders

(a) Particles released in depth $z = 35$ [m DVR90]
(d) Particles released in depth $z = -30$ [m DVR90]
Flow directions: comparison with PVPs data
Contaminant inflow to stream
Conclusion

- Groundwater discharge is concentrated at the extreme edges of stream meanders

- Groundwater discharge varies with time

- Stream monitoring data must be interpreted very carefully to avoid mistakes in risk assessments

- Models are very useful for designing field campaigns and for interpreting monitoring results
Acknowledgements